
This is a preprint of an article published in C. Schwindt, J. Zimmermann (ed.), Handbook on Project
Management and Scheduling Vol. 1, 163-176 (2015).
c© Springer, DOI: 10.1007/978-3-319-05443-8 8

Time-Varying Resource Requirements and Capacities

Sönke Hartmann∗

HSBA Hamburg School of Business Administration, Alter Wall 38, D-20457 Hamburg, Germany.
E-mail: soenke.hartmann@hsba.de

∗supported by the HSBA Foundation

Abstract. This contribution discusses an extension of the classical resource-constrained project
scheduling problem (RCPSP) in which the resource requests of the activities and the resource ca-
pacities may change over time. We present relationships to other variants of the RCPSP as well as
some applications of this problem setting. Subsequently, we analyze the applicability of heuristics
which were originally developed for the standard RCPSP and adapt one of them, a genetic algo-
rithm, to this extension. The chapter closes with a few computational results and some remarks on
research perspectives.

Keywords. Project scheduling, time-varying resource constraints, makespan minimization, genetic
algorithm.

1 Introduction
In the classical resource-constrained project scheduling problem (RCPSP), a set of activities has to be
scheduled such that precedence and resource constraints are met. That is, activities may not start before
their predecessors have finished, and the resource requests may not exceed the capacities in any period.
The goal is to determine a schedule with the shortest possible project duration.

The RCPSP is simple to describe but hard to solve, which has it made attractive for many researchers.
One important direction of research has been the development of better solution methods (see Kolisch
and Hartmann [13] for an overview of heuristics). Another main research direction has been the defini-
tion of alternative and more general problem settings (see Hartmann and Briskorn [8] for a survey).

Popular variants and extensions of the standard RCPSP include multiple execution modes for ac-
tivities (Chapters 21 and 26 of this handbook), generalized precedence relations (Chapters 5, 6, and 7),
and alternative objectives such as maximization of the net present value (Chapter 14). Also several ap-
proaches to generalize the resource constraints have been proposed. This includes alternative resource
types such as storage resources (Chapter 9), continuous resources (Chapter 10), and partially renewable
resources (Chapter 11).

In this contribution, we take a look at another generalization of the resource constraints. Resource
requests and capacities are assumed to be constant over time in the standard RCPSP. This might be
too restrictive for practical applications. Vacation of staff or planned maintenance of machines lead to
capacities which vary over time. Also the resource request of an activity might not be constant during
its processing time, depending on the actual application. Consequently, we consider an extension of the
RCPSP in which resource availabilities are given for each period of the planning horizon, and resource
demands are given for each period of an activity’s duration. The resulting problem setting is referred to
as RCPSP/t to indicate the time-dependency.

Time-Varying Resource Requirements and Capacities 2

Resource capacities and requests varying with time have not yet gained much attention in the scien-
tific literature. While the concept has been mentioned in a few papers (e.g., Bartusch et al. [1], Sprecher
[18], de Reyck et al. [5]), the only dedicated approach is that of Hartmann [7]. There, a priority rule is de-
veloped for time-dependent capacities and requests and embedded into a general randomized scheduling
framework. Tests based on a large set of test instances revealed that the priority rule performs marginally
better than standard RCPSP rules such as the well-known latest start time rule (LST).

The goal of this contribution is twofold. First, we underscore the relevance of the RCPSP/t by
pointing out to applications in medical research and aggregated production planning. Second, we discuss
heuristics and their performance. We summarize findings concerning the applicability of heuristics that
were designed for the standard RCPSP, and we exploit these results to adapt a genetic algorithm to the
RCPSP/t.

2 Problem Setting
In this section we will give a more formal outline of the problem setting. We will also have a brief look
at other project scheduling problems which are special cases of the problem discussed here or which
include the problem discussed here as a special case, respectively.

2.1 Formal Problem Description
The RCPSP with time-varying resource requirements and capacities, the RCPSP/t, can be summarized
as follows. As in the standard RCPSP, we consider n activities 1, . . . ,n with a processing time or duration
p j for each activity j ∈ {1, . . . ,n}. Once started, an activity may not be interrupted. An activity j may
not be started before all its predecessor activities i ∈ Pred(j) have finished, where Pred(j) denotes the
set of the immediate predecessors of activity j. Two additional activities 0 and n+ 1 are added. They
are dummy activities with p0 = pn+1 = 0 and reflect the start and the end of the project, respectively.

K resources are given. Resource k, k = 1, . . . ,K has a capacity of Rk(t) in period t = 1, . . . ,T , where
T is the planning horizon. An activity j requires r jk(t) units of resource k in the t-th period of its
duration, i.e., t = 1, . . . , p j. We usually assume the parameters such as processing times, capacities, and
resource requests to be nonnegative and integer valued. The objective is to determine a schedule (i.e., a
start time for each activity) with minimal total project duration (i.e., minimal makespan) such that both
the temporal and the resource constraints are fulfilled.

A mathematical model can easily be obtained from incorporating the time-dependency of the re-
source parameters into the classical formulation of Pritsker et al. [17]. The resulting model can be found
in Hartmann [7]. In the three-field classification scheme α|β|γ of Brucker et al. [3], the RCPSP/t would
be denoted by PSt|prec|Cmax, where α = PSt stands for project scheduling with limited time-varying
renewable resources.

2.2 Relationships to other Project Scheduling Problems
Obviously, the RCPSP/t generalizes the standard RCPSP. If all resources have constant capacities and if
all activities have constant resource requests, we obtain the standard RCPSP.

Furthermore, the RCPSP/t is a special case of the RCPSP/max, i.e., the RCPSP with generalized
precedence constraints. As outlined by Bartusch et al. [1], time-varying resource capacities can be
transformed into constant ones by selecting the highest capacity and by defining a dummy activity for
each drop in the capacity. Such a dummy activity is then fixed in time by adding a precedence relation
with the source activity along with appropriate minimal and maximal time lags. Time-varying resource
requests can be obtained in the RCPSP/max by splitting an activity whenever the request for a resource
changes. The resulting sub-activities related to the original activity can now be stitched together using
minimal and maximal time lags.

Finally, it should be mentioned that time-varying resource capacities are a special case of the so-
called partially renewable resources (Böttcher et al. [2] and Chapter 11 of this handbook). A partially re-

Time-Varying Resource Requirements and Capacities 3

newable resource k is associated with a set of period subsets Πk = {Pk1, . . . ,Pkν} where Pkµ ⊆ {1, . . . ,T}
for each µ = {1, . . . ,ν}. For each period subset Pkµ ∈Πk there is a total resource capacity Rp

k (Pkµ). That
is, over the periods t ∈ Pkµ, the total capacity of resource k is Rp

k (Pkµ). Time-varying resource capacities
can obviously be captured by defining one period subset {t} for each period t of the planning horizon
and by setting Rp

k ({t}) := Rk(t).

3 Applications
The applicability of time-varying resource capacities and requests is straightforward. The capacity of
a resource may vary due to vacations of staff or maintenance of machines. Resource requests of an
activity are not necessarily constant over time in case of longer or more complex activities. Case studies
on project scheduling problems including such a time-dependency can occasionally be found in the
literature, see, e.g., Kolisch and Meyer [14]. This section reviews two specific applications of time-
varying resource capacities and requests.

3.1 Medical Research Projects
As reported by Hartmann [7], the RCPSP/t can be applied to capture projects in medical research. Many
projects in this field consist of experiments which require certain resources such as laboratory staff and
equipment. The experiments can be viewed as activities which have to be scheduled such that an early
end of the project is achieved. These characteristics suggest to apply project scheduling models like the
RCPSP. A few properties of such medical research projects, however, go beyond the standard RCPSP,
but they can easily be captured by the RCPSP/t.

The laboratory staff and the equipment often have capacities that vary over time. The staff might
be absent due to vacation, or it might be present on certain weekends. Since often several projects are
carried out in the same laboratory at the same time, the equipment might be available for a particular
project only during certain weeks or on certain weekdays.

Moreover, the resource requests of the activities representing experiments need not be constant over
time. Certain laboratory equipment might be required only on specific days, e.g., on the last day of an
experiment. Also, laboratory staff might be required only on certain days of an experiment.

Finally, there are often specific requirements concerning the temporal arrangement of experiments.
A typical constraint is that many repetitions of the same experiment are carried out in parallel because
this makes it easier and more efficient to handle them. It also leads to a clearer schedule which helps
to avoid mistakes when processing the experiments. On the other hand, it is important that not all repe-
titions are executed in parallel because otherwise possible mistakes in the handling of the experiments
might not be detected and the results are distorted.

This can be captured by the RCPSP/t as follows: The repetitions of one experiment are grouped
such that each group contains a number of repetitions that should be carried out in parallel. For each
such group one activity is defined. For example, if an experiment must be repeated 30 times, one would
define three activities corresponding to 10 repetitions each, given that always 10 repetitions should be
carried out in parallel. To make sure that these three activities are not carried out in parallel in the sense
that they do not start on the same day, we define a fictitious resource with a constant capacity of one unit.
Each of the three activities requests one unit this additional resource in the first period of its duration
(and no units in the remaing periods).

More details on modeling medical research projects using the RCPSP/t as well as a case study based
on real data can be found in Hartmann [7].

3.2 Aggregated Production Scheduling
In what follows, we consider the case of a manufacturer of special machines located in Northern Ger-
many. The company produces highly specialized machines in a make-to-order process. In addition to
short-term planning at a detailed level, also long-term planning at an aggregated level is carried out.

Time-Varying Resource Requirements and Capacities 4

The long-term planning approach takes all currently known orders into account. Each order cor-
responds to a machine of a particular type. While the production process of a machine is related to a
project network with several activities, it is not necessary to consider all these individual activities in
long-term planning.

Moreover, the only resources that need to be considered in long-term planning are the assembly
areas. There are several different assembly areas, and each of these contains a number of so-called cells.
The production of a machine type requires one or more cells from several assembly areas.

Each order is related to a deadline which must not be exceeded. The goal of aggregated planning is
to determine a schedule in which the production of all ordered machines finishes as early as possible.
The latter is of particular importance since it leads to free resource capacities for future orders.

This planning task can be captured as follows. We define one activity for each order. In other words,
each project that is related to the production of one ordered machine is represented by a single activity.
This activity is derived from the standard schedule that is associated with the production process of the
related machine. Within this standard schedule, the start times are assumed to be fixed. The duration of
an activity is defined as the total manufacturing time of the machine according to the standard schedule.

Obviously, each assembly area corresponds to one resource with a capacity given by the number of
cells that are available. An activity requires some of the assembly areas, the request corresponds to the
number of required cells. The request for an assembly area usually varies over time. For example, the
first part of an activity might correspond to the manufacturing of certain parts in related assembly areas.
The second part might correspond to the assembly of the machine using these parts. For this, another
assembly area is needed whereas the assembly areas of the parts are no longer needed. This aggregation
of activities to super-activities with time-varying resource requests has also been applied by Heimerl
and Kolisch [10] in a similar way.

We are looking for a start time for each activity (which must observe the given deadline of each
activity). That is, we are looking for the time at which the production related to an order should start
such that the makespan is minimized. Summing up, we obtain the RCPSP/t with an additional deadline
constraint.

4 Heuristics for the RCPSP/t
This section deals with heuristics for the RCPSP/t. We discuss in general how heuristics developed for
the standard RCPSP can be applied. Subsequently, we consider a genetic algorithm which is extended
by so-called delays in order to match the search space of the RCPSP/t.

4.1 Applicability of Heuristics Designed for the Standard RCPSP
Over the last decades, a large number of heuristics have been delevoped for the classical RCPSP, for
overviews refer to Kolisch and Hartmann [12, 13]. Since the structure is very similar to the RCPSP/t,
many of them can also be applied to the extended problem. One particular reason is that the so-called
schedule-generation-schemes (SGS) which are the backbone of most RCPSP heuristics also work for
the RCPSP/t.

Two main SGS are available for the standard RCPSP, the serial and the parallel one (Kolisch [11]).
The serial SGS picks an activity in each step and schedules it at the earliest precedence and resource
feasible start time. The parallel SGS on the other hand considers a point in time and successively
picks an activity that can start at this time without violating the precedence and resource constraints.
Whenever there is no activity left that can be feasibly started, the next point in time is selected. Note
that the SGS only guides the scheduling process. In both SGS, the decision which activity to pick next
is made by a priority rule or by a metaheuristic representation.

As shown by Sprecher et al. [19], the search space of the serial SGS always contains an optimal
schedule for the RCPSP whereas the parallel one sometimes does not. Thus the parallel SGS might
not be able to find an optimal solution for a given instance. This a drawback especially in small search
spaces where the serial SGS is superior because it might be able to find an optimal solution. On the

Time-Varying Resource Requirements and Capacities 5

other hand, the parallel SGS is superior when applied to large instances because it produces schedules
of better average quality, which is an advantage in large search spaces.

Generally, both SGS can be applied to the RCPSP/t. However, their properties change for this
problem class. There are some instances of the RCPSP/t for which the search space of the serial SGS
does not contain an (existing) optimal solution. This has been shown by counterexample in Hartmann
[7]. This counterexample indicates that one may have to start an activity later than at the earliest possible
start time to find an optimal solution.

Another important component of many RCPSP heuristics is the so-called justification or forward-
backward improvement approach of Tormos and Lova [20]. The idea is to improve a schedule as follows.
In a first step, the schedule is scanned from right to left. Thereby, each activity is shifted to the right
as far as possible, but not beyond the dummy sink activity. Next, the activities are scanned from left to
right and shifted as far to the left as possible, but not before the new start time of the dummy source
activity. Valls et al. [21] have demonstrated that this concept can be added to almost every heuristic and
that it improves the results drastically.

This concept is not applicable when resource capacities are varying with time. Activities are shifted
to the right to condense the project, but thereby also the dummy start activity is started later. In case
of constant capacities, one can simply shift the entire project to the left and hence bring it back to the
old start time while keeping the condensed schedule. The latter, however, is not possible if resource
capacities vary over time.

Summing up, the SGS for the RCPSP are applicable to the RCPSP/t as well. This also holds for
heuristics based on these SGS. Unfortunately, however, both SGS are unable to find an existing optimal
solution for some instances of the RCPSP/t. Moreover, justification or forward-backward improvement
is not applicable to the RCPSP/t. These issues must be considered when adapting heuristics from the
RCPSP to the RCPSP/t.

4.2 An Adapted Genetic Algorithm
In this section, we adapt the genetic algorithm (GA) of Hartmann [6] to the RCPSP/t. This GA was
originally proposed for the standard RCPSP. It is based on the so-called activity list representation in
which the non-dummy activities are given in some order. This order must be precedence feasible, that
is, an activity may not appear before any of its predecessors. The serial SGS is applied to determine
a schedule for an activity list. It simply takes the activities in the order given by the activity list and
schedules each one at the earliest precedence and resource feasible time. The activity lists for the first
generation are constructed using a randomized priority rule, namely the latest finish time rule (LFT).

The crossover operator takes parts of the activity lists from the mother and the father and combines
them to form a child. We apply a two-point crossover for which two positions q1 and q2 with 1 ≤
q1 < q2 ≤ n are drawn randomly. The activities for the child in positions 1, . . . ,q1 are copied from
the father. Child positions q1 + 1, . . . ,q2 are filled successively with activities from the mother. We
always take the leftmost activity in the mother’s list that does not yet appear in the child’s current
partial list. The remaining child positions q2 +1, . . . ,n are taken from the father accordingly. Note that
this crossover preserves the activities’ relative positions in the parents and always produces precedence
feasible offspring. The mutation operator swaps two activities with probability πmutation, given that the
result is still precedence feasible. For more details, refer to Hartmann [6].

This GA has yielded better results than other genetic prepresentations for the standard RCPSP (Hart-
mann [6]). In the subsequent years, it has been extended by various researchers. The most noteworthy
extension was the concept of justification or forward-backward improvement (see Sect. 4.1). As dis-
cussed above, however, it is not applicable to instances of the RCPSP/t. Therefore, we stick with the
GA as described above.

In what follows, we discuss two ways of applying this GA to the RCPSP/t. The first approach is
fairly straightforward. Considering that the serial SGS yields feasible solutions for the RCPSP/t, we
can apply the GA described above. The only minor change is that we replace the method to calculate
the first generation with an RCPSP/t-specific procedure, namely the tournament method and the critical

Time-Varying Resource Requirements and Capacities 6

path and resource utilization (CPRU) rule of Hartmann [7]. The main drawback of this GA approach is
that it might not find an optimal solution because of the serial SGS (recall the discussion in Sect. 4.1).

This issue leads us to the second approach. Here we allow to delay activities, that is, an activity may
be started at a time later than the earliest feasible start time. This extends the search space such that an
optimal solution can be found.

The idea behind this is somewhat similar to that of Cho and Kim [4] for the standard RCPSP. They
proposed a simulated annealing (SA) heuristic in which solutions are represented by priority values and
decoded by the parallel SGS. Recall that, like the serial SGS for the RCPSP/t, also the parallel SGS
for the RCPSP might exclude all optimal solutions from the search space. To overcome this restriction,
Cho and Kim [4] suggest to allow to delay activities. They indicate a delay by a negative priority value
(whereas an activity with a positive priority value is started as early as possible). Moreover, they test
different rules to control the number of periods an activity may be delayed.

Our approach is similar as it allows to delay activities as well, albeit using the activity list represen-
tation and the serial SGS. Handling delays, however, follows a different concept. For each activity j we
define a delay value δ(j) and include it in the representation. Now the activity list of an individual I
includes a delay value for each activity:

I =
(

j1 j2 · · · jn
δ(j1) δ(j2) . . . δ(jn)

)
The serial SGS is applied to determine the schedule for an individual. It schedules the activities in

the order prescribed by the activity list. If an activity ji has a delay value of δ(ji) = 0, then this activity
is scheduled as early as possible. If it has a delay value of δ(ji) = 1, the earliest possible start time is
ignored and the next feasible start time is selected. Higher delay values imply that more feasible start
times are skipped. Generally, the earliest δ(ji) feasible start times are skipped and the next feasible start
time is selected. Note that δ(ji) does not indicate the number of periods an activity is delayed. This is
necessary because a feasible start time t for some activity does not mean that start time t +1 is always
feasible if the serial SGS is applied to the RCPSP/t. Also observe that, in contrast to Cho and Kim [4],
the magnitude of the delay is part of the representation and needs not be controlled by additional rules.

The GA based on this extended representation proceeds as follows. In the first generation, each indi-
vidual is assigned an activity list using the tournament procedure and the CPRU rule. With a probability
of πdelay, an activity is assigned a delay value of 1 and 0 otherwise (higher delay values can be produced
by mutation). The crossover operator is extended in a straightforward way: Each activity ji simply
keeps its associated delay value δ(ji). The mutation operator is expanded by changing a delay value
with probability πmutation. Then it is either increased by 1 or decreased by 1, each with a probability of
0.5 (a negative delay value is not accepted, though). This concept implies that the delay is subject to
inheritance—if delaying an activity is beneficial, this will be passed on to the offspring.

Of course, it is not a priori clear whether or not delaying activities is a promising approach. On one
hand, it helps to avoid the drawback of the serial SGS which might exclude all optimal solutions from
the search space. On the other hand, scheduling activities later than necessary can be counterproductive
if the objective is an early end of the project. Thus computational experiments can provide further
insight.

5 Computational Results
In order to analyze the behavior of the heuristics and of the extended genetic algorithm, a computational
study has been carried out. In what follows, we briefly describe the sets of test instances and present the
computational results.

5.1 Test Sets
For the computational analysis we make use of the sets of test instances generated by Hartmann [7].
These sets are based on sets for the standard RCPSP which can be found in the internet-based project

Time-Varying Resource Requirements and Capacities 7

scheduling problem library PSPLIB, cf. Kolisch and Sprecher [15]. The original RCPSP sets were
generated by ProGen (see Kolisch et al. [16]) and have been widely accepted as a standard test bed by
the RCPSP community.

Hartmann [7] added changes to the resource capacities and requests of these instances to adapt them
to the RCPSP/t. These changes are based on parameters. Probabilities PR and Pr control whether or
not a reduction is applied to the capacity and the request in a period, respectively. Higher probabilities
imply more frequent changes in the resource availabilities and requests. Factors FR and Fr determine
the strength of the reduction for the availability and the request, respectively. The smaller the factor, the
stronger the reduction.

The probabilities were set to 0.05, 0.1, and 0.2. The probabilities for changing the capacities and the
requests were always kept the same, that is, PR = Pr. The factors were set to 0 and 0.5. Also the factors
for capacities and the requests are the same, that is, FR = Fr. This led to 6 different instances derived
from the set with n = 30 activities (and hence 6 ·480 = 2880 instances in total) and 6 different instances
derived from the set with n = 120 activities (thus 6 ·600 = 3600 instances in total). More details can be
found in Hartmann [7].

5.2 Results
We tested the tournament heuristic of Hartmann [7] with three different priority rules. We included the
random rule (RND) as a benchmark, the latest start time rule (LST) which is one of the best performing
rules for the standard RCPSP (Kolisch [11]), and the critical path and resource utilization rule (CPRU)
which was developed for the RCPSP/t (Hartmann [7]). We also tested the GA of Hartmann [6] in its
standard form without delay as well as in the extended version designed for the RCPSP/t. In the latter
version, different probabilities πdelay for controlling the distribution of delay values in the first generation
were examined.

To obtain a basis for the comparison, all tested heuristics were stopped after 5000 schedules were
computed for an instance (in the GA, this corresponds to a population size of 100 over 50 generations).
Table 1 provides a summary of the results obtained for the two test sets with n = 30 and n = 120
activities, respectively. It reports the average deviation from the lower bound LB/t (which makes use
of the critical path and the time-varying resource parameters, see Hartmann [7] for a definition), the
percentage of instances for which a feasible solution is found, and the average computation time per
instance in seconds.

The tested methods yield rather similar results for the set with n = 30, whereas the set with n = 120
shows differences between the heuristics. On the latter set, all methods clearly outperform the random
approach. The CPRU rule is slightly better than the LST rule for the standard RCPSP, which confirms
the findings of Hartmann [7]. The GAs lead to better results than the priority rule methods because they
exploit learning effects during the search. This is in line with the results of Kolisch and Hartmann [13].

n = 30 n = 120

heuristic configuration deviation feasible CPU-sec deviation feasible CPU-sec

tourn. RND 11.9% 98.3% 0.101 39.1% 100% 0.471
tourn. LST 11.3% 98.3% 0.103 31.7% 100% 0.627
tourn. CPRU 11.3% 98.3% 0.104 31.1% 100% 0.643
GA no delay 11.3% 98.3% 0.039 29.7% 100% 0.191
GA πdelay = 0.01 11.2% 98.5% 0.041 30.3% 100% 0.209
GA πdelay = 0.05 11.3% 98.5% 0.041 30.5% 100% 0.209
GA πdelay = 0.10 11.3% 98.5% 0.042 30.8% 100% 0.216
GA πdelay = 0.20 11.4% 98.5% 0.043 31.5% 100% 0.224

Table 1: Heuristic results, limit = 5000 schedules

Time-Varying Resource Requirements and Capacities 8

For the set with n = 30, adding the possibility to delay activities in the GA can have a slight positive
effect (the impact is fairly marginal, but it was confirmed in several repetitions of the experiment). For
the set with n= 120 the GA without delays works best. In case of the much smaller solution space related
to the n = 30 set, it makes sense to explore a search space that always contains an optimal solution.
Considering the huge solution space for the n = 120 set, however, it seems to be more promising to
reduce the search space to schedules of good average quality. The latter is achieved when activities are
not delayed. This is very similar to the findings of Hartmann and Kolisch [9] for the standard RCPSP,
where a larger search space (due to the serial SGS) is better for smaller projects whereas a smaller search
space (due to the parallel SGS) is more promising for larger projects.

The results also show that higher delay probabilities for setting up the first generation slightly wors-
ens the results. Increasing the delay probability means that too many activities are delayed which leads
to inferior solutions. But the results do not deteriorate too much because mutation and selection can
eliminate unfavorable delay values from the gene pool. That indicates that the GA is robust because the
evolution will discard delays sooner or later if they are not favorable.

The computation times of the priority rule methods are higher than those of the random method
because of the time-consuming activity selection method. The lowest computation times are obtained
for the GA because it simply picks the next activity from the activity list. Thus, there is no need
for a more time-consuming activity selection. Increasing the delay probability leads to slightly higher
computation times because in case of a delay the start time calculation of an activity has to be executed
more than once. It should also be noted that the methods stop whenever the lower bound LB/t has been
reached and thus an optimal solution has been found.

Tables 2 and 3 show the average deviations from the lower bound LB/t for the different instances
subsets, that is, for the different probabilities and strengths of the resource capacity and request reduc-
tion. Likewise, Tables 4 and 5 display the percentages of those instances for which the lower bound
LB/t was met (and hence the solution is proven to be optimal). Here, we restrict ourselves to the most
important heuristics.

We observe that the solution gap between upper and lower bound is generally small for the sets with
n = 30, and for many instances, the solution gap is 0 which means that the lower bound is met. Taking
also the sets with n = 120 into account, we see that generally the reduction factors of FR = Fr = 0 lead
to lower solution gaps and more optimal solutions than factors of FR = Fr = 0.5. Among the sets for
FR = Fr = 0, the solution gap is lowest for a high reduction probability (PR = Pr = 0.2). Also note that
for the sets with FR = Fr = 0 and PR = Pr = 0.2 there is only a small difference between the random
method and the best GA (n = 120) or hardly any difference at all (n = 30).

A capacity reduction down to 0 means that less degrees of freedom exist for scheduling activities.
In such a case, there may be only a few resource feasible start times, especially for activities with a
long duration. If such an activity can only start rather late due to the resource capacities, this may
determine the makespan to a large degree, and better heuristics cannot find better schedules than simple
random methods. Taking these observations into account, future research might focus more on the sets
with FR = Fr = 0.5 because this setting leaves more degrees of freedom for scheduling, which helps to
identify performance differences between different heuristics.

6 Conclusions
In this contribution, we have summarized the current state of research concerning the RCPSP with time-
dependent resource availabilities and requests. We have also adapted a well-known genetic algorithm
which was originally proposed for the standard RCPSP. By allowing activities to start later than neces-
sary, we have extended the search space of the genetic algorithm in a way than an optimal solution can
be found for the RCPSP/t. The computational experiments showed, however, that delaying activities
only leads to better results in case of small project instances.

Future research directions for the RCPSP/t can be promising in two directions. First, further methods
tailored for this problem class might lead to improved results. Second, research on real-world applica-
tions and case studies can be useful to assess the relevance of the RCPSP/t. It can also be a good idea to

Time-Varying Resource Requirements and Capacities 9

FR = Fr 0 0.5

PR = Pr 0.05 0.1 0.2 0.05 0.1 0.2

tournament RND 11.7 8.7 5.9 14.7 15.2 14.4
tournament CPRU 11.2 8.4 5.8 13.9 14.5 13.6
GA no delay 11.3 8.5 5.9 13.8 14.4 13.6
GA πdelay = 0.01 11.2 8.4 5.8 13.9 14.3 13.3

Table 2: Average deviation from lower bound LB/t in % (n = 30)

FR = Fr 0 0.5

PR = Pr 0.05 0.1 0.2 0.05 0.1 0.2

tournament RND 35.6 27.7 15.9 49.8 51.4 54.0
tournament CPRU 28.3 21.3 12.5 40.5 41.3 43.0
GA no delay 27.1 20.6 12.3 38.3 39.3 40.8
GA πdelay = 0.01 27.5 20.9 12.2 39.2 40.1 41.7

Table 3: Average deviation from lower bound LB/t in % (n = 120)

FR = Fr 0 0.5

PR = Pr 0.05 0.1 0.2 0.05 0.1 0.2

tournament RND 57.9 66.5 69.4 38.5 34.0 34.2
tournament CPRU 58.3 67.3 69.6 39.0 34.8 35.2
GA no delay 57.7 67.7 69.0 38.8 34.8 34.8
GA πdelay = 0.01 58.1 66.9 69.6 39.0 34.6 34.6

Table 4: Percentage of instances for which lower bound LB/t is met (n = 30)

FR = Fr 0 0.5

PR = Pr 0.05 0.1 0.2 0.05 0.1 0.2

tournament RND 25.3 36.7 59.5 06.7 04.5 05.5
tournament CPRU 34.3 43.8 63.8 16.3 12.3 09.3
GA no delay 35.7 44.3 63.2 16.0 12.5 09.8
GA πdelay = 0.01 36.0 45.7 65.3 16.3 12.8 10.3

Table 5: Percentage of instances for which lower bound LB/t is met (n = 120)

Time-Varying Resource Requirements and Capacities 10

use case studies to identfy promising combinations of the RCPSP/t with other extensions of the RCPSP.
The case study concerning aggregated production planning has shown that additional deadlines can be
relevant in practice. Further extensions might also be possible, e.g., multiple modes to reflect alternative
speeds of the production processes. Multiple modes can also be useful when the selection of orders
shall be included, since one mode can reflect the decision not to carry out the production. When order
selection is included, also a different objective function such as the maximization of the net present
value would be needed.

References
[1] M. Bartusch, R. H. Möhring, and F. J. Radermacher.

Scheduling project networks with resource constraints
and time windows. Annals of Operations Research, 16:
201–240, 1988.

[2] J. Böttcher, A. Drexl, R. Kolisch, and F. Salewski.
Project scheduling under partially renewable resource
constraints. Management Science, 45:543–559, 1999.

[3] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and
E. Pesch. Resource-constrained project scheduling: Nota-
tion, classification, models, and methods. European Jour-
nal of Operational Research, 112:3–41, 1999.

[4] J. H. Cho and Y. D. Kim. A simulated annealing algo-
rithm for resource-constrained project scheduling prob-
lems. Journal of the Operational Research Society, 48:
736–744, 1997.

[5] B. de Reyck, E. L. Demeulemeester, and W. S. Herroe-
len. Algorithms for scheduling projects with generalized
precedence relations. In Weglarz [22], pages 77–106.

[6] S. Hartmann. A competitive genetic algorithm for
resource-constrained project scheduling. Naval Research
Logistics, 45:733–750, 1998.

[7] S. Hartmann. Project scheduling with resource capacities
and requests varying with time: A case study. Flexible
Services and Manufacturing Journal, 25:74–93, 2013.

[8] S. Hartmann and D. Briskorn. A survey of variants and
extensions of the resource-constrained project schedul-
ing problem. European Journal of Operational Research,
207:1–14, 2010.

[9] S. Hartmann and R. Kolisch. Experimental evaluation
of state-of-the-art heuristics for the resource-constrained
project scheduling problem. European Journal of Opera-
tional Research, 127:394–407, 2000.

[10] C. Heimerl and R. Kolisch. Scheduling and staffing multi-
ple projects with a multi-skilled workforce. OR Spectrum,
32:343–368, 2010.

[11] R. Kolisch. Serial and parallel resource-constrained
project scheduling methods revisited: Theory and com-
putation. European Journal of Operational Research, 90:
320–333, 1996.

[12] R. Kolisch and S. Hartmann. Heuristic algorithms for
solving the resource-constrained project scheduling prob-
lem: Classification and computational analysis. In
Weglarz [22], pages 147–178.

[13] R. Kolisch and S. Hartmann. Experimental investigation
of heuristics for resource-constrained project scheduling:
An update. European Journal of Operational Research,
174:23–37, 2006.

[14] R. Kolisch and K. Meyer. Selection and scheduling
of pharmaceutical research projects. In J. Jozefowska
and J. Weglarz, editors, Perspectives in Modern Project
Scheduling, pages 321–344. Springer, Berlin, Germany,
2006.

[15] R. Kolisch and A. Sprecher. PSPLIB – a project schedul-
ing problem library. European Journal of Operational
Research, 96:205–216, 1996.

[16] R. Kolisch, A. Sprecher, and A. Drexl. Characterization
and generation of a general class of resource-constrained
project scheduling problems. Management Science, 41:
1693–1703, 1995.

[17] A. A. B. Pritsker, L. J. Watters, and P. M. Wolfe. Mul-
tiproject scheduling with limited resources: A zero-one
programming approach. Management Science, 16:93–
107, 1969.

[18] A. Sprecher. Resource-constrained project scheduling:
Exact methods for the multi-mode case. Number 409 in
Lecture Notes in Economics and Mathematical Systems.
Springer, Berlin, Germany, 1994.

[19] A. Sprecher, R. Kolisch, and A. Drexl. Semi-active, ac-
tive and non-delay schedules for the resource-constrained
project scheduling problem. European Journal of Opera-
tional Research, 80:94–102, 1995.

[20] P. Tormos and A. Lova. A competitive heuristic solu-
tion technique for resource-constrained project schedul-
ing. Annals of Operations Research, 102:65–81, 2001.

[21] V. Valls, F. Ballestin, and M. S. Quintanilla. Justification
and RCPSP: A technique that pays. European Journal of
Operational Research, 165:375–386, 2005.

[22] J. Weglarz, editor. Project scheduling: Recent models, al-
gorithms and applications. Kluwer Academic Publishers,
1999.

