
Experimental evaluation of state-of-the-art heuristics for the
resource-constrained project scheduling problem

S�onke Hartmann a,q, Rainer Kolisch b,*

a Institut f �ur Betriebswirtschaftslehre, Christian-Albrechts-Universit�at zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
b Institut f �ur Betriebswirtschaftslehre, Technische Universit�at Darmstadt, Hochschulstr. 1, D-64289 Darmstadt, Germany

Abstract

We consider heuristic algorithms for the resource-constrained project scheduling problem. Starting with a literature

survey, we summarize the basic components of heuristic approaches. We brie¯y describe so-called X-pass methods

which are based on priority rules as well as metaheuristic algorithms. Subsequently, we present the results of our in-

depth computational study. Here, we evaluate the performance of several state-of-the-art heuristics from the literature

on the basis of a standard set of test instances and point out to the most promising procedures. Moreover, we analyze

the behavior of the heuristics with respect to their components such as priority rules and metaheuristic strategy. Finally,

we examine the impact of problem characteristics such as project size and resource scarceness on the perfor-

mance. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Resource-constrained project scheduling; Heuristics; Experimental evaluation

1. Introduction

The resource-constrained project scheduling
problem (RCPSP) can be stated as follows. A
single project consists of n� 1 activities where
each activity has to be processed in order to
complete the project. The ®ctitious activities 0 and
n� 1 correspond to the `project start' and to the

`project end', respectively. The activities are in-
terrelated by two kinds of constraints. First, pre-
cedence constraints force activity j not to be
started before all its immediate predecessor activ-
ities have been ®nished. Second, performing the
activities requires resources with limited capacities.
Altogether we have a set of K resource types, the
number of resource types is K. While being pro-
cessed, activity j requires rj;k units of resource type
k 2K during every time instant of its non-pre-
emptable duration pj. Resource type k has a lim-
ited capacity of Rk at any point in time. The
parameters pj, rj;k, and Rk are assumed to be non-
negative and deterministic; for the project start
and end activities we have pj � 0 and rj;k � 0 for

European Journal of Operational Research 127 (2000) 394±407
www.elsevier.com/locate/dsw

* Corresponding author.
q Present address: LOGAS Gesellschaft f�ur Logistische

Anwendungssysteme mbH, Gutenberg-Hans, Steckelh�orn 5,

20457 Hamburg, Germany.

E-mail addresses: hartmann@logas.de (S. Hartmann), kol-

isch@bwl.tu-darmstadt.de (R. Kolisch).

0377-2217/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 3 7 7 - 2 2 1 7 (9 9) 0 0 4 8 5 - 3

all k 2K. The objective of the RCPSP is to ®nd
precedence and resource feasible completion times
for all activities such that the makespan of the
project is minimized.

Since its advent the RCPSP has been of interest
for practitioners and researchers. Recent years
have witnessed a tremendous increase in research
for the RCPSP, both in terms of heuristic and
optimal procedures. We refer to the surveys pro-
vided by Icmeli et al. [13], �Ozdamar and Ulusoy
[29], Herroelen et al. [12], Kolisch and Padman [20]
and Brucker et al. [6]. Recently, Kolisch and
Hartmann [19] have given a speci®c overview of
heuristics for the RCPSP. The paper focuses on
the building blocks (schedule generation schemes,
priority rules, schedule representations, operators,
and search strategies) and the way these building
blocks are combined to methods such as X-pass
methods (single pass methods, multi-pass meth-
ods, sampling procedures) and di�erent types of
metaheuristics (simulated annealing, genetic algo-
rithms, and tabu search). This paper is a follow-up
study which provides an in-depth investigation of
the performance of recent RCPSP heuristics as
well as explanations for the observed results.
Based on these observations, we subsequently give
recommendations about prosperous directions for
further research e�orts.

2. Proposed heuristics

This section gives a short survey of the tested
heuristics. We start with the description of sched-
ule generation schemes which are (with the ex-
ception of the method of Baar et al. [3]) a core
building block of all procedures.

2.1. Schedule generation schemes

Schedule generation schemes (SGS) start from
scratch and build a feasible schedule by stepwise
extension of a partial schedule. A partial schedule
is a schedule where only a subset of the n� 2 ac-
tivities have been scheduled. There are two di�er-
ent SGS available which can be distinguished w.r.t.
activity- and time-incrementation. The so-called

serial SGS performs activity-incrementation while
the so-called parallel SGS performs time-incre-
mentation. We give a brief non-technical descrip-
tion of both SGS. For details, cf. [19].

Serial schedule generation scheme and list
scheduling. The serial SGS consists of g � 1; . . . ; n
stages, in each of which one non-dummy activity is
selected from the eligible set and scheduled at the
earliest precedence- and resource-feasible comple-
tion time. The eligible set comprises all unsched-
uled activities which are eligible for scheduling
because all predecessor activities have already been
scheduled. The time complexity of the serial SGS is
O�n2 � K� (cf. [31]). The serial SGS generates active
(and thus feasible) schedules which are for the re-
source-unconstrained scheduling problem optimal
(cf. [17]). Active schedules have the property that
none of the activities can be started earlier without
delaying some other activity (cf. [35]). For sched-
uling problems with a regular performance mea-
sure (for a de®nition of the latter, cf. [35]) such as
makespan minimization, the optimal solution will
always be in the set of active schedules. Hence, the
serial SGS does not exclude optimal schedules a
priori.

A variant of the serial SGS is list scheduling.
Here, the activities of the project are ®rst ordered
within a list k � hj1; j2; . . . ; jn� where jg denotes the
activity at list position g. This list has to be pre-
cedence feasible, i.e., each activity has all its net-
work predecessors as list predecessors (cf. [11]).
Given k, the activities can be scheduled in the or-
der of the list at the earliest precedence- and re-
source-feasible start time. As a special case of the
serial SGS, list scheduling has the same properties
as the serial SGS. That is, it generates active
schedules and hence there is always a list k� for
which list scheduling will generate an optimal
schedule when a regular measure of performance is
considered.

Parallel schedule generation scheme. The paral-
lel SGS does time incrementation. For each itera-
tion g there is a schedule time tg and a set of
eligible activities. An activity is eligible if it can be
precedence- and resource-feasibly started at the
schedule time. Activities are chosen from the eli-
gible set and started at the schedule time until
there are no more eligible activities left. After-

S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407 395

wards, the scheduling scheme steps to the next
schedule time which is given by the earliest ®nish
time of the activities in process. The time com-
plexity of the parallel SGS is O�n2 � K� (cf. [19]).
The parallel SGS generates (precedence- and re-
source-feasible) non-delay schedules which are
optimal for the resource-unconstrained case (cf.
[17]). A non-delay schedule is a schedule where,
even if activity preemption is allowed, none of the
activities can be started earlier without delaying
some other activity (cf. [35]). The set of non-delay
schedules is a subset of the set of active schedules.
It thus has, on average, a smaller cardinality. But it
has the severe drawback that it might not contain
an optimal schedule for a regular performance
measure. For example, in [17] it is shown that in a
well-known instance set 40.3% of the instances
have optimal solutions which are not in the set of
non-delay schedules. Hence, the parallel SGS
might exclude all optimal solutions a priori.

2.2. X-pass methods

X-pass methods, also known as priority rule
based heuristics, employ one or both of the SGS in
order to construct one or more schedules. De-
pending on how many schedules are generated, we
distinguish single pass methods (X � 1) and multi-
pass methods (X > 1). Each time a schedule is
generated, X-pass methods start from scratch
without considering any knowledge from previ-
ously generated solutions. In order to select at
each stage of the generation procedure one activity
to be scheduled, a priority rule is employed. The
latter is de®ned by a mapping which assigns each
activity j in the eligible set a value v�j� and an
objective stating whether an activity with a large or
a small v�j�-value is desired.

Single pass methods. Single pass heuristics select
in each iteration the activity which maximizes or
minimizes the v�j�-value. In case of ties, one or
several tie-breaking rules have to be employed. A
simple way to resolve ties is to choose the activity
with the smallest activity label. There has been an
overwhelming amount of research on priority rules
for the RCPSP; an extensive survey is given in [19].
For our computational analysis we have selected

the two priority rules which have shown favour-
able results in the experimental studies of Alvarez-
Vald�es and Tamarit [2], Davis and Patterson [10]
and Kolisch [15,17]: LFT (latest ®nish time) and
WCS (worst case slack). LFT is a well-known
priority rule. WCS has been introduced by Kolisch
[16] for the parallel scheduling scheme only. The
rule calculates for an activity j the slack which
remains in the worst case if j is not selected in the
current iteration.

Multi-pass methods. There are many possibilities
to combine SGS and priority rules to a multi-pass
method. The most common ones are according to
Kolisch and Hartmann [19] multi-priority rule
methods (cf. [4,37,39],), forward±backward sched-
uling methods (cf. [26,30]), and sampling methods
(cf. [1,9,17]).

Multi-priority rule methods employ the SGS
several times. Each time a di�erent priority rule is
used. Forward±backward scheduling methods
employ an SGS in order to iteratively schedule the
project by alternating between forward and back-
ward scheduling. For reasons to be given in Sec-
tion 3.1, both approaches are not considered in
this study.

Sampling methods generally make use of one
SGS and one priority rule. Di�erent schedules are
obtained by biasing the selection of the priority
rule through a random device. In addition to a
priority value v�j�, a selection probability p�j� is
computed. Depending on how the probabilities are
computed, it is distinguished between random
sampling, biased random sampling, and regret
based biased random sampling (cf. [15]). Random
sampling (RS) assigns each activity in the eligible
set the same probability. Biased random sampling
(BRS) (cf. [1,9]) employs the priority values di-
rectly in order to obtain the selection probabilities;
i.e., if the objective of the priority rule is to select
the activity with the largest priority value, then the
probability is calculated by dividing the priority
value of the activity under consideration by the
sum of the priority values of all eligible activities.
Regret based biased random sampling (RBRS)
uses the priority values indirectly via regret values;
i.e., if, again, the objective is to select the activity
with the largest priority value, the regret value r�j�
is the absolute di�erence between the priority value

396 S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407

v�j� of the activity under consideration and the
worst priority value of all activities in the eligible
set. Before calculating the selection probabilities
based on the regret values, the latter are modi®ed
by adding � > 0. This assures that each activity in
the eligible set has a selection probability greater
than 0 and thus every schedule of the population
can be generated. Schirmer and Riesenberg [34]
propose a variant of RBRS where � is determined
dynamically.

So-called adaptive RBRS have been proposed
by Kolisch and Drexl [18] as well as Schirmer [33].
The essence of adaptive sampling is to select the
SGS, the priority rule, and the way the selection
probabilities are calculated based on characteris-
tics of the problem instance at hand. We refer to
these characteristics, e.g., the number of activities,
the resource strength, and the resource factor,
henceforth as problem parameters (cf. Section 3.1).
The method of Kolisch and Drexl [18] applies
the serial SGS with the LFT-priority rule and
the parallel SGS with the WCS-priority rule while
employing deterministic and regret based sampling
activity selection. The decision on the speci®c
method is based on an analysis of the problem at
hand and the number of iterations already per-
formed. Schirmer [33] has extended this approach
by employing both schedule generation schemes
together with four di�erent priority rules and two
di�erent sampling schemes (RBRS and a variant
of RBRS).

2.3. Metaheuristic approaches

Many metaheuristic strategies such as genetic
algorithms, simulated annealing, and tabu search
are applied to solve hard combinatorial optimiza-
tion problems. In this section, we brie¯y describe
those metaheuristic approaches for the RCPSP
that are used in our computational study. For each
heuristic, we mention the underlying representa-
tion, the method to produce an initial solution,
and the operator to generate new solutions from
existing ones. For a more detailed introduction
into the representations and operators, we refer to
[19]. This reference also includes a description of
those metaheuristic algorithms for the RCPSP that

could not be considered for the following experi-
mental analysis.

Baar et al. [3] develop two tabu search (TS)
algorithms. For our analysis, the approach based
on the so-called schedule scheme representation
has been tested. A schedule scheme consists of four
disjoint relations. These relations specify whether
two activities are precedence related (conjunc-
tions), may not be processed in parallel (disjunc-
tions), must be processed in parallel (parallelity
relations), or are not subject to any restrictions
(¯exibility relations). A schedule scheme represents
those (not necessarily feasible) schedules in which
the relations are maintained. In order to transform
the current schedule scheme into a schedule, Baar
et al. [3] employ a decoding procedure that con-
structs a feasible schedule in which all conjunc-
tions and all disjunctions and a `large' number of
parallelity relations of the schedule scheme are
satis®ed. The neighborhood de®nition is made up
by moves that transform ¯exibility relations into
parallelity relations and parallelity relations into
¯exibility relations. The neighborhood size is re-
duced by a critical path calculation and impact
estimations for the moves. The tabu search pro-
cedure uses a dynamic tabu list as well as priority
rule based start heuristics.

Bouleimen and Lecocq [5] propose a simulated
annealing (SA) procedure. A solution is repre-
sented by an activity list which is assumed to be
precedence-feasible, i.e., each activity must appear
later in the list than all of its predecessors (cf.
Section 2.1). As a decoding procedure, the serial
SGS is used. From the current activity list, a
neighbor activity list (and thus a neighbor solu-
tion) is obtained by applying the so-called shift
operator. This operator selects some activity from
the list and inserts it at some other position, such
that the resulting activity list is again precedence
feasible. The initial solution is constructed using a
priority rule based heuristic.

Hartmann [11] suggests a genetic algorithm
(GA) based on the activity list representation de-
scribed above and compares it to genetic algo-
rithms which make use of the random key and
priority rule representations, respectively. For all
three representations, the serial SGS is used as
decoding procedure. The random key (or priority

S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407 397

value) representation encodes a solution as a vec-
tor of n (real) numbers where the jth number re-
lates to activity j. The random key array is
transformed into a schedule by successively
scheduling the activity with the highest random
key among the eligible activities. Thus the random
keys play the role of priority values. In the priority
rule representation, a solution is given by a list of
priority rules. A schedule is obtained by succes-
sively selecting an activity from the set of the eli-
gible activities. Thereby, the ®rst activity to be
scheduled is selected using the ®rst priority rule in
the list and so on. All three approaches employ
two-point crossover operators related to the re-
spective representation. In the activity list based
GA, the regret based biased random sampling
method with the serial SGS and the LFT-rule is
used to determine the initial generation.

Leon and Ramamoorthy [25] introduce two
local search approaches and a genetic algorithm.
As the latter outperforms the former two heuris-
tics, only the genetic algorithm is used in our
computational investigation. It employs the so-
called problem-space based representation which
is similar to the random key representation de-
scribed above. As decoding procedure, an ex-
tended version of the parallel SGS is used which
allows an activity to start later than at the schedule
time tg (which is the earliest possible start time in
the current partial schedule). This way, the search
space is not restricted to the set of the non-delay
schedules. The standard one-point crossover is
used to determine the next generation in the arti-
®cial evolution. The initial random keys are com-
puted by a priority rule.

Further metaheuristic procedures which are not
included in our study have been proposed by Cho
and Kim [7], Kohlmorgen et al. [14], Lee and Kim
[24], Naphade et al. [27], Pinson et al. [31], Samp-
son and Weiss [32] and Thomas and Salhi [38].

3. Computational results

3.1. Test design

As test instances we have employed the stan-
dard sets j30, j60, and j120 for the RCPSP

presented in [21]. The sets j30 and j60 consist of
480 projects with four resource types as well as
n � 30 and n � 60 activities, respectively. The
levels of the three independent problem parame-
ters network complexity, resource factor, and re-
source strength are systematically altered to de®ne
a full factorial experimental design.

The network complexity �NC� de®nes the av-
erage number of non-redundant precedence rela-
tions per activity. The resource factor �RF � gives
the average percent of di�erent resource types for
which a non-dummy activity has a non-zero re-
source demand. Finally, the resource strength �RS�
de®nes how scarce resource are. An RS-value of 0
de®nes for a speci®c resource k its capacity as the
maximum demand for resource k by any of the
activities. An RS-value of 1 de®nes the capacity of
resource k to be equal to the maximum demand
imposed by the project when performed according
to the earliest start time schedule. A formal de®-
nition of the three parameters can be found in [22]
as well as [23].

For the sets j30 and j60 with 480 instances each,
the levels of the parameters are set as follows:
NC 2 f1:5; 1:8; 2:1g, RF 2 f0:25; 0:5; 0:75; 1g, and
RS 2 f0:2; 0:5; 0:7; 1:0g. The set j120 consists of
600 projects, each with n � 120 activities and four
resource types. Again, a full factorial design with
the three independent problem parameters NC,
RF , and RS is used. The levels of the parameters
are NC 2 f1:5; 1:8; 2:1g, RF 2 f0:25; 0:5; 0:75; 1g,
and RS 2 f0:1; 0:2; 0:3; 0:4; 0:5g.

The following heuristics are included in our
experimental investigation (cf. Sections 2.2 and
2.3): Within (deterministic) single pass heuristics
we employed WCS with the parallel SGS and LFT
with the parallel and the serial SGS (cf. [16,17]).
These three methods are also employed as RBRS
variants (cf. [17]). Additionally, pure random
sampling with the parallel and the serial SGS is
used (cf. [15]). Adaptive sampling approaches in-
cluded are due to Kolisch and Drexl [18] as well as
Schirmer [33]. Metaheuristics tested in this study
include the schedule scheme based TS method of
Baar et al. [3] as well as the activity list based SA
procedure of Bouleimen and Lecocq [5]. Further-
more, three GA methods based on the activity list,
random key, and priority rule representations of

398 S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407

Hartmann [11] as well as the problem space GA of
Leon and Ramamoorthy [25] are considered. This
gives altogether 16 heuristics which have been
tested.

Each algorithm was tested by its author(s) us-
ing the original implementation. This allowed the
authors to adjust their methods in order to obtain
good results. As a consequence, however, the tests
were performed on di�erent computer architec-
tures and operating systems. Therefore, we could
not impose a bound on the computation time to
provide a basis for the comparison. Instead, within
all tested non-single pass heuristics, we limited the
number of generated and evaluated schedules to
1000 and 5000, respectively. This decision is based
on the assumption that the e�ort needed for gen-
erating one schedule is similar in the tested heu-
ristics. With the exception of the schedule scheme
representation based TS approach of Baar et al.
[3], all algorithms considered for our investigation
make use of an SGS as described in Section 2.1.
Hence, we found this assumption justi®ed. At the
end of Section 3.2 we will give some observations
regarding the computation time.

As mentioned above, we did neither include
multi-priority rule methods nor forward±back-
ward scheduling methods. This is due to the fact
that these two types of heuristics cannot be easily
adapted to construct any speci®ed number of
schedules for an instance (in our case, 1, 1000, and

5000). Generally, the number of schedules pro-
duced by multi-priority rule methods is determined
by the number of priority rules employed. For-
ward±backward scheduling methods terminate
when in two consecutive forward and backward
passes no further changes occur and hence no
better schedule will be obtained.

3.2. In¯uence of the project size

Tables 1±5 display the results of the computa-
tional comparison obtained from the evaluation of
1000 and 5000 schedules, respectively. In each ta-
ble, the heuristics are sorted according to de-
scending performance with respect to 5000
iterations. Table 1 summarizes the percentage de-
viations from the optimal makespan for the in-
stance set j30. As for the other two instance sets
some of the optimal solutions are not known, we
measured for these sets the average percentage
deviation from an upper and a lower bound, re-
spectively. The upper bound was set to the lowest
makespan found by any of the tested heuristics
while the lower bound was selected to be the crit-
ical path based lower bound (cf. [36]). We em-
ployed the lower bound in order to allow
researchers to compare their results with the ones
obtained in this study. All lower and upper bounds
can be obtained from the authors upon request.

Table 1

Average deviations from optimal solution ± n � 30

Algorithm SGS Reference Iterations

1 1000 5000

SA ± activity list ser. [5] ± 0.38 0.23

GA ± activity list ser. [11] ± 0.54 0.25*

Sampling ± adaptive ser./par. [33] ± 0.65 0.44

TS ± schedule scheme spec. [3] ± 0.86 0.44*

Sampling ± adaptive ser./par. [18] ± 0.74 0.52

Single pass/sampling ± LFT ser. [17] 5.58 0.83 0.53

GA ± random key ser. [11] ± 1.03 0.56*

Sampling ± random ser. [15] ± 1.44 1.00

GA ± priority rule ser. [11] ± 1.38 1.12

Single pass/sampling ± WCS par. [16,17] 3.88 1.40 1.28

Single pass/sampling ± LFT par. [17] 4.39 1.40 1.29*

Sampling ± random par. [15] ± 1.77 1.48*

GA ± problem space ext. par. [25] ± 2.08 1.59

S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407 399

For the j60 set, the percentage deviations from the
upper and lower bounds are reported in Tables 2
and 4, respectively. 2 Finally, Tables 3 and 5 pro-
vide the respective deviations for the j120 set.

In order to detect signi®cant di�erences between
the heuristic performance for 5000 iterations we did
for each heuristic and the next best one a pairwise
comparison with the Wilcoxon signed-rank test

using SPSS [28]. A signi®cant di�erence in perfor-
mance at the 5% level of con®dence is marked with
a star (*) in the last column of Tables 1±3.

Best heuristics. The heuristics that performed
best in our study are the SA of Bouleimen and
Lecocq [5] and the activity list based GA of
Hartmann [11]. While the procedure of Bouleimen
and Lecocq performs best on the j30 set, the ap-
proach of Hartmann dominates on the instance
sets with larger projects. Only on the j120 set,
however, the di�erence between both procedures is
signi®cant. On the other hand, these two proce-
dures signi®cantly outperform all other heuristics
on each instance set.

2 Note that the schedule scheme based TS heuristic of Baar

et al. [3] was additionally run using the original termination

criterion, which allows two trials each of which was terminated

after no improved solution was found after 250 iterations. This

way, the deviation from the upper bound was lowered to 1.14%.

Table 2

Average deviations from best solution ± n � 60

Algorithm SGS Reference Iterations

1 1000 5000

GA ± activity list ser. [11] ± 0.88 0.33

SA ± activity list ser. [5] ± 1.05 0.37*

Sampling ± adaptive ser./par. [33] ± 1.09 0.82

GA ± priority rule ser. [11] ± 1.32 0.94*

Sampling ± adaptive ser./par. [18] ± 1.48 1.14*

GA ± random key ser. [11] ± 2.36 1.34

TS ± schedule scheme spec. [3] ± 1.68 1.42

Single pass/sampling ± LFT ser. [17] 4.88 1.76 1.43*

single pass/sampling ± WCS par. [16,17] 4.30 1.76 1.44

Single pass/sampling ± LFT par. [17] 4.78 1.71 1.45*

GA ± problem space ext. par. [25] ± 2.36 1.71*

Sampling ± random par. [15] ± 2.71 2.28*

Sampling ± random ser. [15] ± 3.34 2.73

Table 3

Average deviations from best solution ± n � 120

Algorithm SGS Reference Iterations

1 1000 5000

GA ± activity list ser. [11] ± 2.36 0.67*

SA ± activity list ser. [5] ± 5.50 1.64*

GA ± priority rule ser. [11] ± 2.58 1.66

Sampling ± adaptive ser./par. [33] ± 2.87 2.04

Single pass/sampling ± LFT par. [17] 5.76 2.69 2.10

Single pass/sampling ± WCS par. [16,17] 5.54 2.71 2.11*

Sampling ± adaptive ser./par. [18] ± 3.71 3.10*

GA ± problem space ext. par. [25] ± 5.09 3.53*

Single pass/sampling ± LFT ser. [17] 8.02 4.55 3.87*

GA ± random key ser. [11] ± 6.85 4.31*

Sampling ± random par. [15] ± 6.21 5.22*

Sampling ± random ser. [15] ± 9.39 8.19

400 S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407

Comparison of metaheuristics and X-pass meth-
ods. Generally, the results show that the best
metaheuristics outperform the best sampling ap-
proaches. Increasing the number of generated
schedules from 1000 to 5000 results in a stronger
superiority of the metaheuristic results. This is
mainly because sampling procedures generate each
schedule anew without considering any informa-
tion given by already visited solutions while
metaheuristic algorithms typically exploit the
knowledge gained from the previously evaluated
schedule(s).

Random sampling as benchmark. We have in-
cluded two simple sampling procedures in which

the eligible activity to be scheduled next is selected
by pure random choice. Here, the only project
scheduling knowledge is contained in the SGS (due
to this knowledge, the results are not as bad as one
may expect). These random procedures serve as
benchmarks as they allow us to evaluate how
much the results can be improved by incorporating
more project scheduling knowledge. Employing
random sampling methods as benchmark solutions
is common for the evaluation of scheduling heu-
ristics (cf., e.g., [8]). Generally, any procedure
should perform considerably better than a pure
random procedure, especially if the same SGS is
used. The results for the j30 set show, however,

Table 4

Average deviations from critical path lower bound ± n � 60

Algorithm SGS Reference Iterations

1 1000 5000

GA ± activity list ser. [11] ± 12.68 11.89

SA ± activity list ser. [5] ± 12.75 11.90

Sampling ± adaptive ser./par. [33] ± 12.94 12.59

GA ± priority rule ser. [11] ± 13.30 12.74

Sampling ± adaptive ser./par. [18] ± 13.51 13.06

GA ± random key ser. [11] ± 14.68 13.32

TS ± schedule scheme spec. [3] ± 13.80 13.48

Single pass/sampling ± LFT ser. [17] 18.13 13.96 13.53

Single pass/sampling ± WCS par. [16,17] 16.87 13.66 13.21

Single pass/sampling ± LFT par. [17] 17.46 13.59 13.23

GA ± problem space ext. par. [25] ± 14.33 13.49

Sampling ± random par. [15] ± 14.89 14.30

Sampling ± random ser. [15] ± 15.94 15.17

Table 5

Average deviations from critical path lower bound ± n � 120

Algorithm SGS Reference Iterations

1 1000 5000

GA ± activity list ser. [11] ± 39.37 36.74

SA ± activity list ser. [5] ± 42.81 37.68

GA ± priority rule ser. [11] ± 39.93 38.49

Sampling ± adaptive ser./par. [33] ± 39.85 38.70

Single pass/sampling ± LFT par. [17] 43.86 39.60 38.75

Single pass/sampling ± WCS par. [16,17] 43.57 39.65 38.77

Sampling ± adaptive ser./par. [18] ± 41.37 40.45

GA ± problem space ext. par. [25] ± 42.91 40.69

Single pass/sampling ± LFT ser. [17] 48.11 42.84 41.84

GA ± random key ser. [11] ± 45.82 42.25

Sampling ± random par. [15] ± 44.46 43.05

Sampling ± random ser. [15] ± 49.25 47.61

S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407 401

that two of the genetic algorithms yield a higher
average deviation from the optimal makespan
than the respective random sampling procedure
with the same SGS. For the two other instance sets
the two random sampling procedures perform
worst among all heuristics if 5000 iterations are
considered.

Performance of metaheuristics. A comparison of
the results obtained from the metaheuristics shows
that the choice of the underlying representation is
crucial. The two best procedures make use of dif-
ferent metaheuristic strategies while they both
employ the activity list representation. The use of
one metaheuristic paradigm itself does not neces-
sarily lead to consistently good solutions. This can
be seen by the results of the three GAs of Hart-
mann [11] and the GA of Leon and Ramamoorthy
[25]. While the activity list based GA yields the
best results for all project sizes, the outcome of the
random key based GA is of moderate quality on
the j30 set and much worse on the j120 set. The
performance of the priority rule based GA, on the
other hand, improves with increasing project size.
This is because combining good priority rules is a
good strategy in huge search spaces. But, as shown
by Hartmann [11], it might exclude all optimal
solutions from the search space which is a severe
disadvantage for small project sizes. Note, how-
ever, that Hartmann [11] reports that the priority
rule based GA hardly exploits the bene®ts of ge-
netic inheritance.

Performance of deterministic single pass heuris-
tics. For all three instance sets we see that the WCS
priority rule with the parallel SGS performs best
followed by the LFT priority rule with the parallel
SGS and the LFT priority rule with the serial
SGS. This is in line with the results documented in
[16].

Performance of sampling methods. Analyzing
the priority rule based sampling procedures, we
observe that the two rules WCS and LFT give
almost identical results when employed within the
parallel SGS. On none of the three instance sets, a
signi®cant di�erence could be found. On the other
hand, there is a strong in¯uence of the SGS, as will
be explained below. It is evident that sampling is
capable of improving the results of the associated
deterministic single pass approaches.

Performance of adaptive sampling methods.
Considering the adaptive sampling strategies, we
see that the recent approach of Schirmer [33]
outperforms the one of Kolisch and Drexl [18].
This is due to the fact that the former procedure is
based on a more accurate partitioning of the so-
lution space in terms of problem parameters. The
approach of Schirmer [33] makes use of the
problem parameters number of activities (n), re-
source factor �RF �, and resource strength �RS�
while the heuristic of Kolisch and Drexl [18] only
employs the resource factor. Furthermore, the
adaptive method of Kolisch and Drexl [18] was not
tested on instances with more than 30 activities
during the design phase. This also explains why
even some of the simple (non-adaptive) sampling
procedures outperform the approach of Kolisch
and Drexl [18] on the j120 set.

Impact of SGS. Both the LFT based and the
pure random sampling approach were tested with
the serial as well as the parallel SGS. We observe a
strong in¯uence of the SGS which depends on the
problem size: While the serial SGS is the better
choice for these sampling approaches on the j30
instance set, the parallel one takes the lead on the
j120 set. This result can be explained as follows:
Using the parallel SGS implies that only a subset
of the active schedules, namely the non-delay
schedules, are searched. This is a promising strat-
egy if the search space is huge, as it is the case for
the j120 set. On the j30 set, however, the much
smaller search space makes it possible to ®nd good
(or even optimal) solutions within small time lim-
its. There, the restriction to the non-delay sched-
ules is disadvantageous as one may exclude all
optimal solutions from the search space, hence the
serial one becomes the SGS of choice. Similar
®ndings are reported by Kolisch [15].

Computation times. The metaheuristic algo-
rithms which make use of the activity list repre-
sentation are the fastest approaches. This is due to
the fact that the underlying serial SGS for activity
lists (cf. Section 2.1) neither computes the eligible
set nor selects an activity on the basis of priority
values. This, however, has to be done by all other
approaches. Additional e�ort may arise for the
priority rule based methods, i.e., X-pass methods
as well as metaheuristics with priority rule repre-

402 S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407

sentation. There, in each stage and for each eligible
activity the priority value has to be calculated if a
dynamic priority rule (cf. [19]) is employed. Biased
random sampling approaches spend additional
computational e�ort with the priority value based
computation of selection probabilities and the
random selection. Consequently, the heuristics
show di�erent computation times when con-
structing the same number of schedules.

In order to give an impression of the compu-
tation times that occurred in this study, we
mention some computation times that we ob-
tained on a Pentium based computer with 133
MHz and Linux operating system. There, activity
list based GA needs on the average 0.54 seconds
when computing 1000 schedules for the j30 set.
The LFT based sampling method with serial SGS
needs 0.78 seconds while the priority rule based
GA requires 0.91 seconds. Considering the j120
set, the time needed by the activity list based GA
to compute 1000 schedules increases to 3.04 sec-
onds. Note that there is no linear relationship
between the number of activities and the com-
putation times (cf. the complexity statements
given in Section 2.1). For each instance set and
each heuristic, computing 5000 schedules takes
approximately ®ve times longer than computing
1000. The latter observation is reasoned by the
fact that schedule construction requires far more
computational e�ort than further components of
the heuristics such as, e.g., the selection operator
in a GA.

3.3. In¯uence of further problem parameters

Multi-variate linear regression analysis. In order
to assess the in¯uence of the problem parameters
resource strength, resource factor, and network
complexity we have performed for each tested
heuristic a multi-variate linear regression analysis.
We employed the average deviation from the op-
timal solution given 5000 iterations for the bench-
mark set j30 as dependent variable and the three
problem parameters RS, RF , and NC as indepen-
dent variables. Table 6 provides for each method
the resulting R2-value, the constant (Const), and
the coe�cient for each problem parameter. A value
of `0' indicates that the coe�cient is not signi®cant
at the 5% level of con®dence, while a star (*) indi-
cates that the coe�cient is signi®cant at the 1%
level of con®dence. The resulting R2-values range
between 0.14 and 0.38. This indicates that the three
problem parameters do not explain much of the
variance, and hence that the parameters do not
allow to predict the performance of a heuristic on a
speci®c project instance. Nevertheless, some inter-
esting observations can be made.

All Const-values are signi®cant at the 1% level
of con®dence. A low Const-value goes along with
a good average heuristic performance while a high
Const-value indicates, on average, a poor perfor-
mance. The two best Const-values are obtained for
the activity list based approaches of Bouleimen
and Lecocq [5] and Hartmann [11] with the latter
having a slightly better Const-value. The worst

Table 6

Results of the multivariate regression ± n � 30

Algorithm SGS Reference R2 Const NC RS RF

SA ± activity list ser. [5] 0.14 0.74* 0 ÿ0.99* 0.31*

GA ± activity list ser. [11] 0.16 0.67* 0 ÿ0.87* 0.64*

TS ± schedule scheme spec. [3] 0.17 1.44* ÿ0.56* ÿ1.02* 1.01*

Sampling ± adaptive ser./par. [18] 0.28 1.26* 0 ÿ1.83* 1.51*

Sampling ± LFT ser. [17] 0.30 1.71* ÿ0.54* ÿ1.98* 1.58*

GA ± random key ser. [11] 0.30 1.49* ÿ0.53* ÿ1.72* 1.70*

Sampling ± random ser. [15] 0.38 3.01* ÿ1.03* ÿ3.29* 2.92*

GA ± priority rule ser. [11] 0.28 3.93* ÿ0.72 ÿ4.02* 1.46*

Sampling ± WCS par. [16,17] 0.16 4.31* 0 ÿ2.96* ÿ0.71

Sampling ± LFT par. [17] 0.16 4.22* 0 ÿ2.98* ÿ0.65

Sampling ± random par. [15] 0.20 5.17* ÿ0.86 ÿ3.68* 0

GA ± problem space ext. par. [25] 0.21 5.09* ÿ0.75 ÿ3.75* 0

S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407 403

Const-value is due to random sampling with the
parallel SGS.

All signi®cant NC coe�cients are negative, in-
dicating that with increasing NC-level the average
performance of the heuristics increases. This con-
®rms the ®ndings of Kolisch et al. [23]. The ex-
planation is that more precedence relations
between activities lower the number of possible
activity sequences and thus the size of the solution
space. The in¯uence of the network complexity is
rather low. The highest coe�cient is obtained for
random sampling with serial SGS. This is because
the narrower the shape of the project network
becomes, the smaller is the set of eligible activities
and thus the risk of (randomly) selecting an ac-
tivity which leads to a poor schedule.

The RS coe�cients are all highly signi®cant and
range between ÿ0:87 (activity list based GA of
Hartmann [11]) and ÿ4:02 (priority rule based GA
of Hartmann [11]). The negative sign of the coef-
®cients is reasoned by the fact that higher RS-levels
assign more resource capacity to the problems and
hence make them easier. The coe�cient indicates
how sensitive the performance of the heuristics is
in terms of the resource scarceness of the problem.
Again, the most insensitive heuristics are the ac-
tivity list approaches of Hartmann [11] and Bou-
leimen and Lecocq [5].

The analysis of the RF coe�cients has to be
separated. All coe�cients for the serial based SGS
approaches are positive and highly signi®cant,
while the ones for the parallel SGS based ap-

proaches are either non-signi®cant or negative at
the 5% level of con®dence. That is, the performance
of serial SGS based heuristics is negatively a�ected
by an increasing density of the resource demand
array while the performance of parallel SGS based
heuristics are either slightly positive or not a�ected.
This observation has been originally made for X -
pass heuristics in [15]. An explanation is that for
high resource density arrays the serial SGS is not
capable of building `compact schedules' where ac-
tivities are put close to one another. Contrary, the
parallel SGS, generating non-delay schedules, does
inherently build `compact schedules'.

We were not able to perform an analogous
analysis for the j60 and j120 sets because for these
sets there are no optimal solutions available. When
employing lower or upper bounds instead, the re-
sults are biased. Using as the dependent variable
the di�erence between the upper bound found by
the heuristic under consideration and a lower
bound, the regression coe�cients explain the de-
viation of the lower bound from the unknown
optimal solution, rather than the deviation of the
upper bound from the unknown optimal solution.
This is because the lower bounds currently avail-
able are not tight (especially for the j120 set).
When de®ning the dependent variable as the dif-
ference between the best upper bound found by all
heuristics and the upper bound of the heuristic
under consideration, the regression coe�cients
re¯ect not only the performance of the heuristic
under consideration but implicitly also the per-

Table 7

Average deviations from optimal solution w.r.t. resource strength ± n � 30

Algorithm SGS Reference RS

0.25 0.50 0.75 1.00

SA ± activity list ser. [5] 0.81 0.09 0.00 0.00

GA ± activity list ser. [11] 0.68 0.24 0.04 0.00

TS ± schedule scheme spec. [3] 0.78 0.66 0.31 0.00

Sampling ± adaptive ser./par. [18] 1.51 0.37 1.19 0.00

Sampling ± LFT ser. [17] 1.60 0.41 0.10 0.00

GA ± random key ser. [11] 1.31 0.76 0.15 0.00

Sampling ± random ser. [15] 2.58 1.15 0.26 0.00

GA ± priority rule ser. [11] 3.18 1.11 0.18 0.00

Sampling ± WCS par. [16,17] 2.52 1.28 1.29 0.00

Sampling ± LFT par. [17] 2.53 1.31 1.29 0.00

Sampling ± random par. [15] 2.98 1.62 1.31 0.00

GA ± problem space ext. par. [25] 3.08 1.85 1.42 0.00

404 S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407

formance of the other heuristics. This leads to re-
gression coe�cients which cannot be interpreted as
those for the j30 set.

Means for resource parameter levels. In the re-
mainder of this computational analysis, we focus
on the separate e�ects of the RS and the RF . Tables
7 and 8 display the average deviations from the
optimal makespan after 5000 iterations for each
parameter setting of the j30 set, respectively. For all
procedures, the average deviation decreases
monotonically with increasing resource strength,
i.e., with declining resource availability, con®rming
the results obtained from the multi-variate regres-
sion. For RS � 1, the problems are resource-un-
constrained, allowing each heuristic to ®nd an
optimal solution. Observe also that the activity list
based GA of Hartmann [11] yields better results
than the SA procedure of Bouleimen and Lecocq
[5] on the (hard) instances with a low RS value while
the latter performs better on the moderately re-
source-constrained problems. Analyzing the per-
formance of the heuristics w.r.t. the resource factor,
we can see that for a low RF value, procedures
based on the serial SGS perform much better than
those based on the parallel one. Again, this is in line
with the multi-variate regression results.

4. Summary and guidance for future research

Based on our ®ndings we can give the following
recommendations towards the development of

further improvements for project scheduling heu-
ristics.

The most successful approaches in our numer-
ical evaluation are metaheuristics, namely the
simulated annealing procedure of Bouleimen and
Lecocq [5] and the genetic algorithm of Hartmann
[11]. Nevertheless, priority rule based sampling
methods are indispensable to construct initial so-
lutions for metaheuristics. Hence, research in both
directions ± sampling and metaheuristics ± will
remain a promising ®eld of research in the future.

Among the metaheuristics, the procedures
which make use of the activity list representation
performed best. The underlying metaheuristic
strategy does not seem to be as in¯uential as the
representation; a genetic algorithm and a simu-
lated annealing approach share the top ranks in
our analysis. This indicates that the development
of new representations may be more interesting
than the incorporation of existing representations
into other metaheuristic strategies.

As already mentioned, the best heuristics in our
computational analysis are metaheuristics based on
the activity list representation and the serial SGS.
The experiences with sampling methods show that
the parallel SGS outperforms the serial one on the
larger problems. Thus, the question arises if it
would pay to develop a variant of the parallel SGS
for activity lists. Possibly, this might lead to im-
proved metaheuristics for very large problems.

Adaptive sampling methods may outperform
simple sampling approaches. The key to success,

Table 8

Average deviations from optimal solution w.r.t. resource factor ± n � 30

Algorithm SGS Reference RF

0.25 0.50 0.75 1.00

SA ± activity list ser. [5] 0.12 0.09 0.40 0.28

GA ± activity list ser. [11] 0.02 0.11 0.37 0.47

TS ± schedule scheme spec. [3] 0.03 0.30 0.67 0.75

Sampling ± adaptive ser./par. [18] 0.00 0.18 0.83 1.04

Sampling ± LFT ser. [17] 0.00 0.18 0.83 1.10

GA ± random key ser. [11] 0.01 0.13 0.89 1.18

Sampling ± random ser. [15] 0.01 0.38 1.54 2.06

GA ± priority rule ser. [11] 0.26 1.33 1.45 1.43

Sampling ± WCS par. [16,17] 1.44 1.60 1.00 1.04

Sampling ± LFT par. [17] 1.44 1.59 1.01 1.09

Sampling ± random par. [15] 1.44 1.63 1.21 1.63

GA ± problem space ext. par. [25] 1.44 1.79 1.40 1.71

S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407 405

however, is an appropriate partitioning of the so-
lution space in terms of problem parameters, such
as number of activities, resource factor, and re-
source strength. Equally important is the consid-
eration of all possibly relevant parameter settings
when designing an adaptive method. One should
keep in mind, however, that the proposed adaptive
sampling procedures, once adapted to the test in-
stances by their designer, are ®xed and incapable
of learning from previously evaluated schedules.
This makes them inferior to metaheuristics which
have the inherent property of learning, i.e., self-
adaptation.

Acknowledgements

We are indebted to Tonius Baar, Peter Brucker,
and Sigrid Knust (University of Osnabr�uck), Ka-
mel Bouleimen and Henri Lecocq (University of
Li�ege), Jorge Leon and Balakrishnan Rama-
moorthy (Texas A&M University) as well as An-
dreas Schirmer (University of Kiel) for their help
in this research. Furthermore, we would like to
thank Andreas Drexl (University of Kiel) for his
support.

References

[1] R. Alvarez-Vald�es, J.M. Tamarit, Algoritmos heur�isticos

deterministas y aleatorios en secuenciac�on de proyectos

con recursos limitados, Q�uestii�o 13 (1989) 173±191.

[2] R. Alvarez-Vald�es, J.M. Tamarit, Heuristic algorithms for

resource-constrained project scheduling: A review and an

empirical analysis, in: R. Søowi�nski, J. Weßglarz (Eds.),

Advances in Project Scheduling, Elsevier, Amsterdam,

1989, pp. 113±134.

[3] T. Baar, P. Brucker, S. Knust, Tabu-search algorithms and

lower bounds for the resource-constrained project sched-

uling problem, in: S. Voss, S. Martello, I. Osman, C.

Roucairol (Eds.), Meta-Heuristics: Advances and Trends

in Local Search Paradigms for Optimization, Kluwer

Academic Publishers, Boston, 1998, pp. 1±8.

[4] F.F. Boctor, Some e�cient multi-heuristic procedures for

resource-constrained project scheduling, European Journal

of Operational Research 49 (1990) 3±13.

[5] K. Bouleimen, H. Lecocq, A new e�cient simulated

annealing algorithm for the resource-constrained project

scheduling problem, Technical Report, Service de Robo-

tique et Automatisation, Universit�e de Li�ege, 1998.

[6] P. Brucker, A. Drexl, R. M�ohring, K. Neumann, E. Pesch,

Resource-constrained project scheduling: Notation, classi-

®cation, models, and methods, European Journal of

Operational Research 112 (1) (1999) 3±41.

[7] J.-H. Cho, Y.-D. Kim, A simulated annealing algorithm

for resource constrained project scheduling problems,

Journal of the Operational Research Society 48 (1997)

735±744.

[8] R.W. Conway, W.L. Maxwell, L.W. Miller, Theory of

Scheduling, Addison-Wesley, Reading, MA, 1967.

[9] D.F. Cooper, Heuristics for scheduling resource-con-

strained projects: An experimental investigation, Manage-

ment Science 22 (11) (1976) 1186±1194.

[10] E.W. Davis, J.H. Patterson, A comparison of heuristic and

optimum solutions in resource-constrained project sched-

uling, Management Science 21 (1975) 944±955.

[11] S. Hartmann, A competitive genetic algorithm for re-

source-constrained project scheduling, Naval Research

Logistics 45 (1998) 733±750.

[12] W. Herroelen, E. Demeulemeester, B. De Reyck, Re-

source-constrained project scheduling ± A survey of recent

developments, Computers & Operations Research 25 (4)

(1998) 279±302.

[13] O. Icmeli, S.S. Erenguc, C.J. Zappe, Project scheduling

problems: A survey, International Journal of Operations &

Production Management 13 (11) (1993) 80±91.

[14] U. Kohlmorgen, H. Schmeck, K. Haase, Experiences with

®ne-grained parallel genetic algorithms, Annals of Opera-

tions Research 90 (1999) 203±219.

[15] R. Kolisch, Project Scheduling under Resource Constraints

± E�cient Heuristics for Several Problem Classes, Physica,

Heidelberg, 1995.

[16] R. Kolisch, E�cient priority rules for the resource-

constrained project scheduling problem, Journal of Oper-

ations Management 14 (3) (1996) 179±192.

[17] R. Kolisch, Serial and parallel resource-constrained project

scheduling methods revisited: Theory and computation,

European Journal of Operational Research 90 (1996) 320±

333.

[18] R. Kolisch, A. Drexl, Adaptive search for solving hard

project scheduling problems, Naval Research Logistics 43

(1996) 23±40.

[19] R. Kolisch, S. Hartmann, Heuristic algorithms for the

resource-constrained project scheduling problem: Classi®-

cation and computational analysis, in: J. Weßglarz (Ed.),

Project Scheduling ± Recent Models, Algorithms and

Applications, Kluwer Academic Publishers, Boston, 1999,

pp. 147±178.

[20] R. Kolisch, R. Padman, An integrated survey of deter-

ministic project scheduling, Technical Report 463, Manu-

skripte aus den Instituten f�ur Betriebswirtschaftslehre der

Universit�at Kiel, 1997.

[21] R. Kolisch, C. Schwindt, A. Sprecher, Benchmark in-

stances for project scheduling problems, in: J. Weßglarz

(Ed.), Project Scheduling ± Recent Models, Algorithms

and Applications, Kluwer Academic Publishers, Boston,

1999, pp. 197±212.

406 S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407

[22] R. Kolisch, A. Sprecher, PSPLIB ± a project scheduling

problem library, European Journal of Operational Re-

search 96 (1996) 205±216.

[23] R. Kolisch, A. Sprecher, A. Drexl, Characterization and

generation of a general class of resource-constrained

project scheduling problems, Management Science 41

(10) (1995) 1693±1703.

[24] J.-K. Lee, Y.-D. Kim, Search heuristics for resource

constrained project scheduling, Journal of the Operational

Research Society 47 (1996) 678±689.

[25] V.J. Leon, B. Ramamoorthy, Strength and adaptability of

problem-space based neighborhoods for resource-con-

strained scheduling, OR Spektrum 17 (2/3) (1995) 173±182.

[26] R.K.-Y. Li, J. Willis, An iterative scheduling technique for

resource-constrained project scheduling, European Journal

of Operational Research 56 (1992) 370±379.

[27] K.S. Naphade, S.D. Wu, R.H. Storer, Problem space search

algorithms for resource-constrained project scheduling,

Annals of Operations Research 70 (1997) 307±326.

[28] M.J. Noru�sis, The SPSS Guide to Data Analysis, SPSS Inc,

Chicago, 1990.

[29] L. �Ozdamar, G. Ulusoy, A survey on the resource-

constrained project scheduling problem, IIE Transactions

27 (1995) 574±586.

[30] L. �Ozdamar, G. Ulusoy, A note on an iterative forward/

backward scheduling technique with reference to a proce-

dure by Li and Willis, European Journal of Operational

Research 89 (1996) 400±407.

[31] E. Pinson, C. Prins, F. Rullier, Using tabu search for

solving the resource-constrained project scheduling prob-

lem, in: Proceedings of the Fourth International Workshop

on Project Management and Scheduling, Leuven, 1994, pp.

102±106.

[32] S.E. Sampson, E.N. Weiss, Local search techniques for the

generalized resource constrained project scheduling prob-

lem, Naval Research Logistics 40 (1993) 665±675.

[33] A. Schirmer, Case-based reasoning and improved adaptive

search for project scheduling, Technical Report 472,

Manuskripte aus den Instituten f�ur Betriebs-

wirtschaftslehre der Universit�at Kiel, 1998.

[34] A. Schirmer, S. Riesenberg, Parameterized heuristics for

project scheduling ± biased random sampling methods,

Technical Report 456, Manuskripte aus den Instituten f�ur

Betriebswirtschaftslehre der Universit�at Kiel, 1997.

[35] A. Sprecher, R. Kolisch, A. Drexl, Semi-active, active, and

non-delay schedules for the resource-constrained project

scheduling problem, European Journal of Operational

Research 80 (1995) 94±102.

[36] J.P. Stinson, E.W. Davis, B.M. Khumawala, Multiple

resource-constrained scheduling using branch and bound,

AIIE Transactions 10 (1978) 252±259.

[37] P.R. Thomas, S. Salhi, An investigation into the relation-

ship of heuristic performance with network-resource char-

acteristics, Journal of the Operational Research Society 48

(1) (1997) 34±43.

[38] P.R. Thomas, S. Salhi, A tabu search approach for the

resource constrained project scheduling problem, Journal

of Heuristics 4 (2) (1998) 123±139.

[39] G. Ulusoy, L. �Ozdamar, Heuristic performance and

network/resource characteristics in resource-constrained

project scheduling, Journal of the Operational Research

Society 40 (12) (1989) 1145±1152.

S. Hartmann, R. Kolisch / European Journal of Operational Research 127 (2000) 394±407 407

