
Experimental Investigation of Heuristics for
Resource-Constrained Project Scheduling: An

Update
Rainer Kolischa, Sönke Hartmannb

— Accepted for publication in European Journal of Operational Research —
Please do not copy, cite or distribute without the permission of the authors.

a Chair of Technology–based Services & Operations Management
Technical University of Munich, Germany

e-mail: rainer.kolisch@wi.tum.de
www.som.wi.tum.de

b Chair of Production and Operations Management
University of Kiel, Germany

e-mail: soenke.hartmann@gmx.de
www.bwl.uni-kiel.de/bwlinstitute/Prod/alumni/hartmann/hartmann.html

February 18, 2005

Abstract

This paper considers heuristics for the well–known resource–constrained project

scheduling problem (RCPSP). It provides an update of our survey which was pub-

lished in 2000. We summarize and categorize a large number of heuristics that have

recently been proposed in the literature. Most of these heuristics are then evaluated

in a computational study and compared on the basis of our standardized experimental

design. Based on the computational results we discuss features of good heuristics.

The paper closes with some remarks on our test design and a summary of the recent

developments in research on heuristics for the RCPSP.

Keywords: Project Scheduling, Resource Constraints, Heuristics, Computational

Evaluation.

1 Introduction

The resource–constrained project scheduling problem (RCPSP) can be stated as follows:
A single project consists of a number ofn activities where each activity has to be pro-
cessed in order to complete the project. The activities are interrelated by two kinds of
constraints. First, precedence constraints force activityj not to be started before all its
immediate predecessors have been finished. Second, performing the activities requires
resources with limited capacities. Altogether there is a set ofR resources. While being
processed, activityj requiresr j,k units of resourcek∈ R in every time instant of its non–
preemptable durationp j . Resourcek has a limited capacity ofRk at any point in time.
The parametersp j , r j,k, andRk are assumed to be nonnegative and deterministic. The
objective of the RCPSP is to find precedence and resource feasible completion times for
all activities such that the makespan of the project is minimized.

Since its advent (cf. Pritsker et al. [61]) the RCPSP has been a very popular and
frequently studied NP–hard optimization problem (cf. Błażewicz et al. [7]). The last
20 years have witnessed a tremendous improvement of both heuristic and exact solution
procedures (cf. e.g. the surveys given in Demeulemeester and Herroelen [18], Hartmann
and Kolisch [26, 37], Herroelen et al. [27], Kolisch and Padman [38], andÖzdamar and
Ulusoy [53]). Due to the fact that the RCPSP “is one of the most intractable problems
in Operations Research”, it has recently “become a popular playground for the the latest
optimization techniques, including virtually all local search paradigms” (cf. Möhring et
al. [48] p. 330).

The paper at hand is in line with research that has been performed by the authors
in [37] and [26]. In [37] we have classified the multitude of heuristic procedures for
the RCPSP with respect to their building blocks such as e.g. schedule generation scheme
(SGS), metaheuristic strategy, and solution representation. We have also tested the heuris-
tics on three sets of benchmark instances from the PSPLIB library (cf. Kolisch et al.
[40], Kolisch and Sprecher [39]). This research has been continued in [26] where we in-
cluded new methods and performed a rigorous computational study in order to compare
the heuristics, to assess the significance of the building blocks, and to evaluate the im-
pact of problem characteristics such as e.g. the scarcity of resources. The new paper has
four goals: First, we summarize new heuristics for the RCPSP which have been presented
since our last survey. Second, we extend the computational comparison of [26] by includ-
ing new heuristics and by adding results which have been obtained by applying a larger
computational effort. Third, we try to point out promising approaches which promote the
progress in the field. Finally, we provide a critical discussion of the test design and its
usage by other authors. To restrict the scope of this survey, we consider only heuristics
developed for the classical RCPSP. Nevertheless, we have included papers for general-
izations of the RCPSP if computational results for standard test instances of the classical
RCPSP are given.

1

2 New Heuristics for the RCPSP

This section summarizes recent heuristics from the literature. Following the categoriza-
tion of our study [37] the approaches are grouped into priority rule–based X–pass methods
(Section 2.1), classical metaheuristics (Section 2.2), non–standard metaheuristics (Section
2.3), and other heuristics (Section 2.4). For a detailed description of basic components
of heuristics such as schedule generation schemes, priority rules, and representations, we
refer to [37]. Heuristics that have already been summarized in our previous surveys will
be briefly mentioned at the beginning of each Section. For a description the reader is
referred to [26, 37].

2.1 X-Pass Methods

X-pass methods which have been summarized in our recent study were presented by
Alvarez-Valdes and Tamarit [3], Boctor [8], Cooper [13, 14], Davies [15], Davis and
Patterson [16], Elsayed [20], Klein [29], Kolisch [33, 34, 35], Kolisch and Drexl [36],
Lawrence [41], Li and Willis [44],Özdamar and Ulusoy [52, 54, 55], Patterson [57, 58],
Schirmer [63], Schirmer and Riesenberg [64, 65], Thesen [69], Thomas and Salhi [70],
Ulusoy andÖzdamar [76], Valls et al. [80], and Whitehouse and Brown [82].

Sampling. Coelho and Tavares [12] suggest a so–called global biased random sampling
approach which employs the serial SGS. Whereas previous sampling methods compute
probabilities for activity selection, this procedure perturbs the priority values by adding
a random value∈ [0,1] which is multiplied by a scaling factor. The activites are sched-
uled in the order prescribed by the modified priority values. An efficient implementation
which exploits these “global” perturbations and avoids eligible set computations is also
indicated.

2.2 Classical Metaheuristics

In this subsection we present approaches which follow well–known metaheuristic paradigms,
namely genetic algorithms, tabu search, simulated annealing, and ant systems. Previously
described metaheuristics for the RCPSP include Baar et al. [5], Boctor [9], Bouleimen
and Lecocq [10], Cho and Kim [11], Hartmann [24], Kohlmorgen et al. [32], Lee and
Kim [42], Leon and Ramamoorthy [43], Naphade et al. [49], Pinson et al. [59] as well as
Sampson and Weiss [62].

Genetic algorithms (GAs). Alcaraz and Maroto [1] develop a genetic algorithm based
on the activity list representation and the serial SGS. An additional gene decides whether
forward or backward scheduling is employed when computing a schedule from an activity
list. The crossover operator for activity lists is extended such that a child’s activity list
can be built up either in forward or in backward direction.

2

Alcaraz et al. [2] extend the genetic algorithm of Alcaraz and Maroto [1] by adding
two features from the literature. First, they take the additional gene that determines the
SGS to be used from Hartmann [25] (see below). Second, they employ the forward-
backward improvement of Tormos and Lova [73] (see Section 2.4).

Coelho and Tavares [12] present a genetic algorithm which makes use of the activity
list representation and the serial SGS. They suggest a new crossover operator for activ-
ity lists called late join function crossover. The current version of the working paper
gives only the following rough verbal description of the operator: The late join function
crossover constructs a new individual by “adopting the father solution and swapping each
adjacent pair that is in reverse order in the mother.”

Gonçalves and Mendes [23] use a random key representation and a modified parallel
SGS. The modified parallel SGS determines all activities to be eligible which can be
started up to the schedule time plus a delay time. The random key has twice the length
of the number of activities. Each entry is a random number. The first half of the entries
biases the activity selection and the second half biases the delay time of the SGS.

Hartmann [25] proposes a so-called self–adapting genetic algorithm. This approach
extends the activity list representation by adding a gene that determines whether the se-
rial or the parallel SGS is to be used for transforming an activity list into a schedule. As
a prerequisite for the procedure, it is defined how the parallel SGS can be used as de-
coding procedure for activity lists. The choice of the more successful SGS is left to the
inheritance and survival–of–the fittest mechanisms.

Hindi et al. [28] suggest a genetic algorithm based on the activity list representation,
the serial SGS, and the related order–preserving crossover strategy (similar to Hartmann
[24]). The initial population is produced by a pure random mechanism (whereas LFT–
based sampling is used in [24]).

Toklu [72] develops a genetic algorithm which operates directly on schedules (i.e.,
a vector of start times). Since the genetic operators may produce infeasible offspring
schedules, a penalty function is used which evaluates the constraint violations.

Valls et al. [77] extend the activity list–based genetic algorithm with forward–backward
improvement of Valls et al. [78] (cf. Section 2.4) to what they call a hybrid genetic algo-
rithm. They develop a peak crossover operator which uses properties of the schedule when
recombining activity lists. Generally speaking, this operator aims at inheriting those parts
of the parents’ activity lists that correspond to peaks in the resource usage. Moreover, a
second phase of the evolution is started from neighbors of the best individual found in
the first phase. The neighbors are constructed with the approach used in Valls et al. [81]
(cf. Section 2.3) which is applied to activity lists here.

Tabu search (TS). Artigues et al. [4] employ their insertion technique (cf. Section 2.4)
in order to devise a tabu search procedure. Essentially, the method iteratively selects an
activity which is first deleted from the schedule and afterwards re–inserted with a network
flow–based insertion algorithm. Chosen activities as well as their resource predecessor
and successors are elements of the tabu list.

Klein [30] develops a so–called reactive tabu search method for the RCPSP with time-
varying resource constraints. It is based on the activity list representation and the serial

3

SGS. The neighborhood is given by swap moves which include the shifting of predeces-
sors or successors of the swapped activities if the resulting list would otherwise not be
precedence feasible (similar to Baar et al. [5]).

Nonobe and Ibaraki [50] suggest a tabu search approach for a generalized variant
of the RCPSP. Considering only the features that are relevant for the standard RCPSP,
the heuristic employs the activity list representation, the serial SGS, shift moves, and a
specific neighborhood reduction mechanism.

Thomas and Salhi [71] introduce a tabu search method which operates directly on
schedules. They define three different moves. Since the resulting neighbor schedules may
be infeasible, they employ a repair procedure to turn an infeasible schedule into a feasible
one.

Simulated annealing (SA). Valls et al. [78] test a simulated annealing method in a pa-
per that focuses on forward–backward improvement (cf. Section 2.4). The neighborhood
definition is taken from Valls et al. [81] (cf. Section 2.3), where a neighbor is constructed
by selecting the next activity either in the order of the original solution or by biased ran-
dom sampling.

Ant systems. Merkle et al. [46] present the first application of ant systems (a meta-
heuristic strategy developed by Dorigo et al. [19]) to the RCPSP. In their approach, a
single ant corresponds to one application of the serial SGS. The eligible activity to be
scheduled next is selected using a weighted evaluation of the latest start time (LST) prior-
ity rule and so–called pheromones which represent the learning effect of previous ants. A
pheromone valueτi j describes how promising it seems to put activityj as thei–th activity
into the schedule. Further features of the approach include separate ants for forward and
backward scheduling and a 2–opt–based local search phase at the end of the heuristic.

2.3 Non–Standard Metaheuristics

This subsection is devoted to approaches which can be viewed as metaheuristics although
they do not follow one of the classic metaheuristic schemes. It summarizes various non–
standard local search and population–based methods which have been proposed to solve
the RCPSP.

Local search–oriented approaches. Fleszar and Hindi [21] apply a variable neigh-
borhood search (VNS, a metaheuristic strategy introduced by Mladenovic and Hansen
[47]) to the RCPSP. They employ the activity list representation, the serial SGS, and an
enhanced shift move which allows to shift activities together with their predecessors or
successors. During run–time, their approach adds precedence relations on the basis of
lower bound calculations.

Palpant et al. [56] embed forward–backward scheduling with the serial SGS and
constraint–based optimization of partial schedules in a local search procedure. An initial
solution is generated by applying forward–backward scheduling. Afterwards, a so–called

4

block of activities, activities which are processed in parallel or contiguously, is selected
randomly and constraint propagation is employed to determine for the selected activities
a minimum makespan schedule under the constraints imposed by the non–selected activi-
ties. The entire method iterates between the selection of activities, optimization of partial
schedules, and forward–backward scheduling until a stopping criterion is met.

Valls et al. [81] propose a two–phase local search method. It is based on the topologi-
cal order representation (which is a special case of the random key representation) and the
serial SGS. Two types of moves (applied either in forward or backward direction) make
use of critical activities. A third move employs random sampling within a time window
derived from the current solution. The second phase starts from the neighborhood of the
best solutions obtained in the first phase. A solution’s neighbor is constructed by selecting
the next activity either in the order of the original solution or by biased random sampling.

Population–based approaches. Debels et al. [17] apply scatter search (cf. Glover et
al. [22]), a population based framework which can be viewed as a variant of genetic
algorithms. It makes use of a standardized version of the topological order representation
(cf. Valls et al. [81]) and the serial SGS. New solutions are produced by a crossover–like
operator that follows a rough analoy to electromagnetism and essentially consists of linear
combinations of solutions (it is, in a way, similar to path relinking, cf. Glover et al. [22]).
Finally, forward–backward improvement is integrated (cf. Section 2.4).

Kochetov and Stolyar [31] devise an evolutionary algorithm which combines genetic
algorithm, path relinking, and tabu search. Solutions are evolved and diversified in a ge-
netic way. Evolution is done by choosing two solutions from the pool and constructing the
path of solutions linking the selected solutions (path relinking, cf. Glover et al. [22]). The
best solution from the path is chosen and improved via tabu search. The latter employs
a neighborhood where the activity list is divided in three parts. For the first and the last
part the serial SGS is employed while for the mid part the parallel SGS is used. The best
solution from the tabu search is added to the population and the worst solution is removed
from the population.

Valls et al. [79] employ the two–phase framework and the topological order repre-
sentation of Valls et al. [81] which is described above. They introduce an implicit
enumeration–based move to increase the resource utilization within a time interval. A
binary (and hence crossover–like) operator is defined to produce convex combinations of
solutions in the population.

Valls et al. [78] introduce several non–standard population–based schemes in a study
which focuses on forward–backward improvement (cf. Section 2.4). Their schemes differ
in the way parents are selected for reproduction and in the number of offspring produced
for each pair of parent individuals. They use the priority value representation for which
four operators are discussed. The change operator (which is considered in our computa-
tional study) replaces random positions of the first parent with the corresponding positions
of the second parent. This can be viewed as a variant of the uniform crossover.

5

2.4 Other Methods

This subsection summarizes those heristics that can neither be classified as X–pass con-
struction methods nor as metaheuristics. Previously considered methods of this category
are those of Alvarez–Valdes and Tamarit [3], Bell and Han [6], Mausser and Lawrence
[45], Oguz and Bala [51], Pollack–Johnson [60], Shaffer et al. [66], and Sprecher [67].

Forward–backward improvement (FBI). Tormos and Lova [73] develop a heuristic
which applies forward–backward improvement to schedules computed by sampling. In
each iteration, either the serial or the parallel SGS is used to generate a schedule by regret–
based sampling with the latest finish time (LFT) priority rule. The resulting schedule is
then improved by a backward–forward pass. In the backward pass, the activities are
considered from right to left and scheduled at the latest feasible time (i.e., they are shifted
to the right). Subsequently, in the forward pass, they are considered from left to right and
scheduled at the earliest feasible time (i.e., they are shifted back to the left).

Tormos and Lova [74] enhance this approach. A so–called selective mechanism ex-
ecutes backward–forward improvement passes only if the schedule constructed by sam-
pling is better than the average of the solutions generated by sampling so far.

Tormos and Lova [75] present a few refinements of [74]. In addition to backward–
forward improvement passes also forward–backward improvement passes can be exe-
cuted. The number of passes to be applied to a schedule is selected on the basis of the
quality of the schedule.

Valls et al. [78] employ a so–called double justification procedure to improve sched-
ules found by other heuristics. It shifts all activities within a schedule to the right and
subsequently to the left in order to obtain a better schedule. In order to demonstrate its
power and general applicability, it is tested by adding it to various sampling methods and
metaheuristics from the literature as well as to new approaches (cf. Sections 2.2 and 2.3).
The best results are reported for the extension of the activity list–based genetic algorithm
of Hartmann [24].

Due to the apparently strong similarity of the justification procedure of Valls et al. [78]
and the backward–forward pass of Tormos and Lova [73], we refer to both approaches by
the notion of forward–backward improvement (FBI).

Further heuristics. Artigues et al [4] have devised an insertion technique based on
the parallel SGS and the worst case slack (WCS) priority rule. Other piority rules for
the parallel SGS are possible. The method is a multi–pass (MP) approach which solves
an RCPSP instancen times where at timej (j = 1, . . . ,n) activity j is deleted from the
instance. Afterwards a network flow–based insertion algorithm is applied in order to
perform a makespan–minimal extension of the schedule with activityj. From the at
mostn different schedules, the schedule with the minimum makespan is selected. The
complexity of the entire method isO(n3 ·m) wherem denotes the number of renewable
resources.

Möhring et al. [48] propose a Lagrange heuristic. The method first generates an upper
bound of the project makespan by employing a multi priority rule method. Afterwards, a

6

Lagrange relaxation (LR) and a list scheduling heuristic are invoked iteratively, in order to
generate lower and upper bounds for the RCPSP. The Lagrange relaxation of the RCPSP
is solved in polynomial time and the precedence feasible start times are employed as input
for a list scheduling procedure. The latter generates a number of different precedence and
resource feasible schedules by scheduling the activities in non–increasing order of their
start time plus the processing times multiplied by a constantδ (0≤ δ≤ 1).

Sprecher [68] proposes a network decomposition technique which incorporates exact
methodologies into heuristic search. In each iteration, an initial schedule is generated by
biased random sampling employing the latest finish time (LFT) priority rule. On the basis
of the generated schedule, the problem is divided into subproblems which are solved with
the truncated version of the branch–and–bound method of Sprecher [67]. The schedules
of the subprojects are concatenated to an improved schedule for the overall project.

3 Computational Comparison

3.1 Test Design

This section presents a computational comparison of many of the heuristics that have
been reviewed in Section 2. We use the same test sets and the same stopping criterion
as in our previous comparison [26]. We employ the three test sets J30, J60, and J120
that have been constructed by the instance generator ProGen (see Kolisch et al. [40]).
The projects in these test sets consist of 30, 60, and 120 activities, respectively. Each
set has been generated using a full factorial design of parameters which determine the
characteristics of the resource and precedence constraints. In total, we have 480 instances
with 30 activities, 480 instances with 60 activities, and 600 instances with 120 activities.
The instances have been used by many researchers, and they are available from the project
scheduling library PSPLIB in the internet. For more detailed information on the test sets,
we refer to Kolisch and Sprecher [39].

As in our last study, we limited the number of generated schedules in the heuristics
in order to provide the basis for the comparison. This is based on the assumption that
the computational effort for constructing one schedule is similar in most heuristics. This
holds in particular for methods which apply the serial or parallel SGS; one pass of an SGS
with one start time assignment per activity counts as one schedule. As in our previous
comparison, we have selected 1,000 and 5,000 schedules as stopping criteria. Since the
speed of computers has increased, larger numbers of schedules can be computed within
acceptable run–times. Therefore, we have selected 50,000 schedules as an additional
limit.

The advantage of this stopping criterion is that it is independent of the computer plat-
form. Therefore, all heuristics could be tested by their author(s) using the original im-
plementation and the best configuration. Also, future studies can easily make use of
the benchmark results presented here by applying the same stopping criterion. More-
over, the tests are independent of compilers and implementational skills, thus we evaluate

7

heuristic concepts rather than program codes. However, the stopping criterion also has
a few drawbacks. First, it cannot be applied to all heuristics. For example, it cannot be
used if backtracking steps or mixed integer program–based (MIP) methods are included.
Nevertheless, the stopping criterion is applicable to most heuristics that have been pro-
posed. Second, different heuristics may require different computation times to compute
one schedule. For example, the serial SGS is faster within a metaheuristic based on the
activity list representation than within a priority rule–based sampling method (the for-
mer simply picks the next activity to be scheduled from the list while the latter has to
compute the eligible set, priority values, and selection probabilities). But these differ-
ences are rather small—using a time limit with different computers, operating systems,
programming languages, and implementational skills would surely lead to much greater
inaccuracies. Summing up, we believe that limiting the number of schedules is the best
criterion available for such a broad comparison.

After the presentation of the computational results and a summary of the main obser-
vations in Subsection 3.2, we close this section with a critical discussion of the stopping
criterion in Subsection 3.3.

3.2 Experimental Results

3.2.1 Performance of the Heuristics

The computational results of the tested heuristics can be found in Tables 1, 2, and 3 for the
instance sets J30, J60, and J120, respectively. These tables extend those of our previous
comparison study [26]. Each heuristic is briefly described by a few keywords, the SGS
employed, and the reference. For the J30 set, the results are given in terms of average
deviation from the optimal solution. For the other two sets, some of the optimal solutions
are unknown. Thus, the average deviation from the well–known critical path–based lower
bound is reported.

Each of the three tables is divided into three blocks. The first block considers the
test design described in the previous subsection. Here, the results for the three stopping
criteria (maximum of 1,000, 5,000, and 50,000 schedules, respectively) are given. Many
researchers used our test design in their papers; if results according to our test design were
available, we cite them here. Since these papers usually did not cover all test sets and/or
stopping criteria, some researchers sent us additional results for this study which are given
here as well (note that we accepted only additional results, but no results that improved
previously published ones). In order to obtain these additional results, only adjustments of
parameter values were allowed but no methodological modifications. These restrictions
were necessary to ensure that the results presented here are consistent with the description
of the heuristics in the cited papers. In some papers, our stopping criteria were not applied
correctly (this was the case for [50], [73], [74], [75]). In these cases, the authors sent us
corrected results which are reported here.

Some researchers did not provide results according to our stopping criteria (note that
for some methods it is impossible to count the number of schedules in the way required by

8

our criterion, consider in particular the approaches of Möhring et al. [48], Sprecher [68],
and Valls et al. [79]). As long as they used the test sets employed here, we have added the
results given in their papers in the second or the third block of the tables. The second block
of each table contains algorithms where the average deviation together with the average
and the maximal number of schedules required is given. Contrary, the third block reports
the results of heuristics together with the average and maximal computation time as well
as the clockpulse of the computer used. Of course, for the heuristics reported in blocks
two and three, the computational effort has to be taken into account when interpreting the
results; observe that the reported effort greatly varies between the different methods.

In each block, the heuristics are sorted with respect to increasing deviation. In the first
block, the methods are sorted with respect to the results for 50,000 schedules. In case of
ties we use the results for 5,000 schedules. Let us also remark that in general only the
best performing heuristic of a paper has been considered here. Only if a paper considers
substantially different new approaches or if it leads to additional insight, more than one
heuristic is considered.

To determine the best heuristics, we use the concept of dominance. A heuristica is
dominated by a heuristicb if a has for at least one combination of instance set and number
of generated schedules a higher average deviation thanb without having for any of the
other combinations a lower average deviation. In our previous study only two heuristics
where non–dominated: the procedure of Hartmann [24] and the one of Bouleimen and
Lecocq [10]. Using this benchmark for the current study we find six new approaches
which dominate each of the two benchmark heuristics. These are (in alphabetical order):
Alcaraz et al. [2], Debels et al. [17], Hartmann [25], Kochetov and Stolyar [31], and
Valls et al. [77, 78]. Out of these six algorithms, only those of Alcaraz et al. [2], Debels
et al. [17], Kochetov and Stolyar [31], and Valls et al. [77] are not dominated by any
other heuristic. Hence, these four non–dominated procedures are the best heuristics in
our comparison.

Furthermore, several of the new methods of the first block which do not dominate
the benchmark outperform the two benchmark heuristics on some instance–schedule–
combinations. Finally, some of the heuristics from the second and the third block of the
Tables 1 – 3 which were not tested using our test design show a lower average deviation
as the benchmark as well.

The overall improvement of heuristic performance can best be seen on the J120 set
where the deviations of several new methods are substantially smaller than those reported
in our last survey. On the J30 set, several heuristics are now on average so close to the
optimum that this test set can hardly be used to evaluate heuristics any longer.

3.2.2 Characteristics of Good Heuristics

In our last study we have resumed that “the best heuristics in our computational analysis
are metaheuristics based on the activity list representation and the serial SGS.” Further-
more, we have proposed that the use of the parallel scheduling scheme might be beneficial
for large problems. Based on the new results in general and the heuristics which dominate
the benchmark in particular we can add the following observations.

9

max. #schedules
Algorithm SGS Reference 1,000 5,000 50,000
GA, TS – path relinking both Kochetov, Stolyar [31] 0.10 0.04 0.00
Scatter Search – FBI serial Debels et al. [17] 0.27 0.11 0.01
GA – hybrid, FBI serial Valls et al. [77] 0.27 0.06 0.02
GA – FBI serial Valls et al. [78] 0.34 0.20 0.02
GA – forw.-backw., FBI both Alcaraz et al. [2] 0.25 0.06 0.03
GA – forw.-backward serial Alcaraz, Maroto [1] 0.33 0.12 –
sampling – LFT, FBI both Tormos, Lova [75] 0.25 0.13 0.05
TS – activity list serial Nonobe, Ibaraki [50] 0.46 0.16 0.05
sampling – LFT, FBI both Tormos, Lova [73] 0.30 0.16 0.07
GA – self-adapting both Hartmann [25] 0.38 0.22 0.08
GA – activity list serial Hartmann [24] 0.54 0.25 0.08
sampling – LFT, FBI both Tormos, Lova [74] 0.30 0.17 0.09
TS – activity list serial Klein [30] 0.42 0.17 –
sampling – random, FBI serial Valls et al. [78] 0.46 0.28 0.11
SA – activity list serial Bouleimen, Lecocq [10] 0.38 0.23 –
GA – late join serial Coelho, Tavares [12] 0.74 0.33 0.16
sampling – adaptive both Schirmer [63] 0.65 0.44 –
TS – schedule scheme related Baar et al. [5] 0.86 0.44 –
sampling – adaptive both Kolisch, Drexl [36] 0.74 0.52 –
GA – random key serial Hartmann [24] 1.03 0.56 0.23
sampling – LFT serial Kolisch [35] 0.83 0.53 0.27
sampling – global serial Coelho, Tavares [12] 0.81 0.54 0.28
sampling – random serial Kolisch [33] 1.44 1.00 0.51
GA – priority rule serial Hartmann [24] 1.38 1.12 0.88
sampling – WCS parallel Kolisch [34, 35] 1.40 1.28 –
sampling – LFT parallel Kolisch [35] 1.40 1.29 1.13
sampling – random parallel Kolisch [33] 1.77 1.48 1.22
GA – problem space mod. par. Leon, Ramamoorthy [43] 2.08 1.59 –

#schedules
result average max.

GA – activity list serial Hindi et al. [28] 0.37 1,683 3,068
MP – network flow parallel Artigues et al. [4] 1.74 30 30

CPU-time (sec)
result average max. computer

decompos. & local opt. serial Palpant et al. [56] 0.00 10.26 123.0 2.3 GHz
VNS – activity list serial Fleszar, Hindi [21] 0.01 0.64 5.9 1.0 GHz
local search – critical serial Valls et al. [81] 0.06 1.61 6.2 400 MHz
population–based serial Valls et al. [79] 0.10 1.16 5.5 400 MHz
network decomposition – Sprecher [68] 0.12 2.75 39.7 166 MHz

Table 1: Average deviations (%) from optimal makespan — ProGen setJ = 30

10

max. #schedules
Algorithm SGS Reference 1,000 5,000 50,000
Scatter Search – FBI serial Debels et al. [17] 11.73 11.10 10.71
GA – hybrid, FBI serial Valls et al. [77] 11.56 11.10 10.73
GA, TS – path relinking both Kochetov, Stolyar [31] 11.71 11.17 10.74
GA – FBI serial Valls et al. [78] 12.21 11.27 10.74
GA – forw.-backw., FBI both Alcaraz et al. [2] 11.89 11.19 10.84
GA – self-adapting both Hartmann [25] 12.21 11.70 11.21
GA – activity list serial Hartmann [24] 12.68 11.89 11.23
sampling – LFT, FBI both Tormos, Lova [75] 11.88 11.62 11.36
sampling – LFT, FBI both Tormos, Lova [74] 12.14 11.82 11.47
GA – forw.-backward serial Alcaraz, Maroto [1] 12.57 11.86 –
sampling – LFT, FBI both Tormos, Lova [73] 12.18 11.87 11.54
SA – activity list serial Bouleimen, Lecocq [10] 12.75 11.90 –
TS – activity list serial Klein [30] 12.77 12.03 –
TS – activity list serial Nonobe, Ibaraki [50] 12.97 12.18 11.58
sampling – random, FBI serial Valls et al. [78] 12.73 12.35 11.94
sampling – adaptive both Schirmer [63] 12.94 12.58 –
GA – late join serial Coelho, Tavares [12] 13.28 12.63 11.94
GA – random key serial Hartmann [24] 14.68 13.32 12.25
GA – priority rule serial Hartmann [24] 13.30 12.74 12.26
sampling – adaptive both Kolisch, Drexl [36] 13.51 13.06 –
sampling – WCS parallel Kolisch [34, 35] 13.66 13.21 –
sampling – global serial Coelho, Tavares [12] 13.80 13.31 12.83
sampling – LFT parallel Kolisch [35] 13.59 13.23 12.85
TS – schedule scheme related Baar et al. [5] 13.80 13.48 –
GA – problem space mod. par. Leon, Ramamoorthy [43] 14.33 13.49 –
sampling – LFT serial Kolisch [35] 13.96 13.53 12.97
sampling – random parallel Kolisch [33] 14.89 14.30 13.66
sampling – random serial Kolisch [33] 15.94 15.17 14.22

#schedules
result average max.

VNS – activity list serial Fleszar, Hindi [21] 10.94 152,503 1.7 mio
MP – network flow parallel Artigues et al. [4] 14.20 60 60

CPU-time (sec)
result average max. computer

decompos. & local opt. serial Palpant et al. [56] 10.81 38.8 223.0 2.3 GHz
population–based serial Valls et al. [79] 10.89 3.7 22.6 400 MHz
local search – critical serial Valls et al. [81] 11.45 2.8 14.6 400 MHz
network decomposition – Sprecher [68] 11.61 460.2 4311.5 166 MHz
TS – network flow parallel Artigues et al. [4] 12.05 3.2 – 450 MHz
LR – activity list both, mod.par. M̈ohring et al. [48] 15.60 6.9 57 200 MHz

Table 2: Average deviations (%) from critical path lower bound — ProGen setJ = 60

11

max. #schedules
Algorithm SGS Reference 1,000 5,000 50,000
GA – hybrid, FBI serial Valls et al. [77] 34.07 32.54 31.24
GA – forw.-backw., FBI both Alcaraz et al. [2] 36.53 33.91 31.49
Scatter Search – FBI serial Debels et al. [17] 35.22 33.10 31.57
GA – FBI serial Valls et al. [78] 35.39 33.24 31.58
GA, TS – path relinking both Kochetov, Stolyar [31] 34.74 33.36 32.06
population–based – FBI serial Valls et al. [78] 35.18 34.02 32.81
GA – self-adapting both Hartmann [25] 37.19 35.39 33.21
sampling – LFT, FBI both Tormos, Lova [75] 35.01 34.41 33.71
ant system serial Merkle et al. [46] – 35.43 –
GA – activity list serial Hartmann [24] 39.37 36.74 34.03
sampling – LFT, FBI both Tormos, Lova [74] 36.24 35.56 34.77
sampling – LFT, FBI both Tormos, Lova [73] 36.49 35.81 35.01
GA – forw.-backward serial Alcaraz, Maroto [1] 39.36 36.57 –
TS – activity list serial Nonobe, Ibaraki [50] 40.86 37.88 35.85
GA – late join serial Coelho, Tavares [12] 39.97 38.41 36.44
sampling – random, FBI serial Valls et al. [78] 38.21 37.47 36.46
SA – activity list serial Bouleimen, Lecocq [10] 42.81 37.68 –
GA – priority rule serial Hartmann [24] 39.93 38.49 36.51
sampling – adaptive both Schirmer [63] 39.85 38.70 –
sampling – LFT parallel Kolisch [35] 39.60 38.75 37.74
sampling – WCS parallel Kolisch [34, 35] 39.65 38.77 –
GA – random key serial Hartmann [24] 45.82 42.25 38.83
sampling – adaptive both Kolisch, Drexl [36] 41.37 40.45 –
sampling – global serial Coelho, Tavares [12] 41.36 40.46 39.41
GA – problem space mod. par. Leon, Ramamoorthy [43] 42.91 40.69 –
sampling – LFT serial Kolisch [35] 42.84 41.84 40.63
sampling – random parallel Kolisch [33] 44.46 43.05 41.44
sampling – random serial Kolisch [33] 49.25 47.61 45.60

#schedules
result average max.

VNS – activity list serial Fleszar, Hindi [21] 33.10 1.9 mio 10.8 mio
MP – network flow parallel Artigues et al. [4] 39.34 120 120

CPU-time (sec)
result average max. computer

population–based serial Valls et al. [79] 31.58 59.4 264.0 400 MHz
decompos. & local opt. serial Palpant et al. [56] 32.41 207.9 501.0 2.3 GHz
local search – critical serial Valls et al. [81] 34.53 17.0 43.9 400 MHz
LR – activity list both, mod. par. M̈ohring et al. [48] 36.00 72.9 654.0 200 MHz
TS – network flow parallel Artigues et al. [4] 36.16 67.0 – 450 MHz
network decomposition – Sprecher [68] 39.29 458.5 1511.3 166 MHz

Table 3: Average deviations (%) from critical path lower bound — ProGen setJ = 120

12

Metaheuristic and Population–based Approaches. Again, the best performing meth-
ods are metaheuristics. The six dominating procedures follow a population–based meta-
heuristic approach. However, for the RCPSP, pure genetic algorithms are hardly devel-
oped anymore. Instead, the basic genetic algorithm scheme is modified, or it is extended
by integrating further features such as path relinking, forward–backward improvement,
self–adapting mechanisms, non–standard crossover techniques, or even other metaheuris-
tics. Sometimes, various modifications and extensions are applied within the same heuris-
tic. While several of these approaches lead to excellent results, it remains unclear in some
papers if all modifications and extensions really contribute to the performance.

The best approach in our study that is not a metaheuristic is the sampling method with
forward–backward improvement of Tormos and Lova [75]. It is interesting to note that
this approach leads to excellent solutions after computing 1,000 schedules but produces
only relatively small improvements when computing more schedules. In contrast, the
metaheuristics show much larger improvements of the solution quality when computing
more schedules. This is due to the fact that they exploit learning effects during run–time.

Schedule Generation Scheme (SGS).In our last study [26] we have stressed the suc-
cess of the serial SGS. With all of the six dominating methods employing the serial SGS
this observation still holds. Three of the six dominating procedures employ the parallel
SGS in addition to the serial one. Since neither the serial nor the parallel SGS is consis-
tently superior (which is demonstrated by the results of the sampling methods), it appears
to be a good idea to employ both. In fact, comparing the results of Hartmann [25] with
those of Hartmann [24], we can state that using the parallel SGS in addition to the se-
rial one improves the results. While most methods that use both SGS construct a single
schedule either with the serial or with the parallel one, Kochetov and Stolyar [31] take a
different approach. They employ each of the SGS to construct just a part of a schedule.
Thus, there are different ways to successfully employ both SGS within one heuristic.

Forward–backward improvement (FBI). A noteworthy trend is the use of forward–
backward improvement in a surprisingly large number of recent papers (Alcaraz et al. [2],
Debels et al. [17], Tormos and Lova [73, 74, 75], Valls et al. [77, 78]). These heuristics
are among the best in our study, and four of the six dominating heuristics include FBI.
The power of FBI is also demonstrated by Valls et al. [78] who add it to the simplest
project scheduling heuristic, i.e. pure random sampling. Tables 1 – 3 show that adding
FBI to random sampling leads to much better results than adding a priority rule. In fact,
on the set J120, random sampling with FBI (which is still a remarkably simple procedure)
obtains better results than several more complex approaches including that of Bouleimen
and Lecocq [10], one of the two non–dominated methods in our last survey. Moreover,
as demonstrated by Valls et al. [79], FBI can easily be added to any existing heuristic for
the RCPSP because it can be applied to any intermediate schedule. This makes FBI a
promising building block of heuristics.

13

3.3 Critical Remarks on the Use of the Test Design

In the recent years, many researchers have adopted our test design when evaluating their
heuristics. This allowed them to compare their approaches with many other heuristics
from the literature. However, in some cases our test design has not been used correctly
because the number of schedules has not been counted accurately.

In order to avoid misunderstandings or deviating interpretations in the future, we wish
to clarify again the assumptions of our stopping criterion. The heuristic to be evaluated
is stopped after a certain maximal number of schedules have been constructed (1,000,
5,000, or 50,000 schedules). Generating one schedule corresponds to (at most) one start
time assigment per activity, as done by an SGS (regardless of the computational effort,
cf. also the discussion in Section 3.1). Each schedule must be counted. This includes,
e.g., constructed but then rejected neighbor schedules in local search methods. If FBI is
applied, then each single pass has to be counted (e.g., a backward–forward–pass would
imply two schedules in addition to the original one). A schedule must be counted as
one whole schedule even if it is not constructed completely. In fact, methods in our
comparison such as [25] employ approaches to abort the completion of inferior schedules
to reduce the computation time, but this does not affect the schedule count.

Researchers who cannot apply the criterion (because their heuristics do not build
schedules with an SGS) might still wish to incorporate our comparison into their stud-
ies. They may find a suitable way to do so which is, of course, fine.

4 Conclusions

During the years since our last survey [26], research on project scheduling heuristics has
led to both a wide range of new methodological ideas and a substantial improvement of
computational results with respect to our test design. In our last comparison, the best
performing approaches were the genetic algorithm of Hartmann [24] and the simulated
annealing procedure of Bouleimen and Lecocq [10]. Now several new methods clearly
outperform these former benchmark approaches. These are (in alphabetical order): Al-
caraz et al. [2], Debels et al. [17], Hartmann [25], Kochetov and Stolyar [31], and Valls et
al. [77, 78].

Starting with the recent work of Tormos and Lova [73], several new papers applied
a forward–backward improvement technique (also called justification) to improve sched-
ules constructed by X–pass methods or metaheuristics. This simple procedure—the ac-
tivities are shifted to the right within the schedule and then to the left—produces excel-
lent results and can be combined with almost any other approach. Four of the six best
approaches listed above make use of forward–backward improvement. We expect that
forward–backward improvement will become an important component in future heuris-
tics for the RCPSP.

Another main research focus has been on metaheuristics. Genetic algorithms and
tabu search have been the most popular strategies. Moreover, the first application of ant
systems to the RCPSP as well as various non–standard local search– and population–

14

based schemes have been proposed. The activity list has been the most widely used
representation. It has usually been employed in its classical form, while a few researchers
have extended it. Considering the advantages of representations like the activity list,
one may in fact wonder why some recent metaheuristics still employ the direct schedule
representation with operators that are very likely to produce infeasible solutions (cf. [71],
[72]).

Priority rule–based X–pass methods have attracted less attention. As already pointed
out in our last survey, they are inferior to metaheuristic approaches which are capable of
learning. Finally, several heuristics have been developed which can neither be classified
as X–pass methods nor as metaheuristics. Such approaches include a Lagrange method
and strategies based on decomposition and optimization. Although these approaches have
not yet yielded competitive results, we view them as interesting and promising.

Considering the development during the last years, a general observation is that the
recently proposed heuristics (including the six best performing ones listed above) contain
more components than earlier procedures. Many methods consider both scheduling di-
rections instead of only forward scheduling, both SGS instead of only one, more than one
type of local search operator, or even more than one type of metaheuristic strategy. While
recombining merely existing ideas occasionally seems to be less creative than developing
new ideas, some of the integration efforts have put well–known techniques into a new and
promising context, and the results have often been encouraging.

With the standard test sets which are available on the internet and the computer–
independent stopping criterion, the test design and benchmark results of this paper can
easily be used by other researchers in future studies. In a few recent papers, however, our
comparison has not been used appropriately because the number of schedules (which is
the basis for the comparison) was not counted accurately. Therefore, we have emphasized
the assumptions of our test design. We believe that the test design and the benchmark
results from our previous study have already contributed to significant improvements of
heuristic results. On the other hand, such easy comparisons might motivate researchers
rather to improve the benchmark results with recombinations or modifications of exist-
ing approaches than to develop new and innovative ideas. This is not our intention, and
we would like to emphasize the value of new methodologies (even if they are not fully
competitive).

Acknowledgements. We are indebted to the following researchers who provided us
with results according to our test design: Javier Alcaraz and Concepcion Maroto (Tech-
nical University of Valencia, Spain), Christian Artigues, Philippe Michelon, and Mireille
Palpant (University of Avignon, France), José Silva Coelho and Luis Valadares Tavares
(Technical University of Lisbon, Portugal), Yuri Kochetov and Artem Stolyar (Sobolev
Institute of Mathematics, Russia), Koji Nonobe and Toshihide Ibaraki (University of Ky-
oto, Japan), Pilar Tormos and Antonio Lova (Technical University of Valencia, Spain),
as well as Vincente Valls, Sacramento Quintanilla, and Francisco Ballestin (Technical
Universtiy of Valencia, Spain).

15

Abbreviations

FBI Forward–backward improvement
GA Genetic algorithm
LFT Latest finish time (priority rule)
LR Lagrange Relaxation
LST Latest start time (priority rule)
MIP Mixed Integer Program
MP Multi–Pass
SGS Schedule generation scheme
TS Tabu search
VNS Variable neighborhood search
WCS Worst case slack (priority rule)

References

[1] J. Alcaraz and C. Maroto. A robust genetic algorithm for resource allocation in
project scheduling.Annals of Operations Research, 102:83–109, 2001.

[2] J. Alcaraz, C. Maroto, and R. Ruiz. Improving the performance of genetic algo-
rithms for the RCPS problem. Proceedings of the Ninth International Workshop on
Project Management and Scheduling, pages 40–43, Nancy, 2004.

[3] R. Alvarez-Vald́es and J. M. Tamarit. Heuristic algorithms for resource–constrained
project scheduling: A review and an empirical analysis. In R. Slowinski and
J. Weglarz, editors,Advances in project scheduling, pages 113–134. Elsevier, Ams-
terdam, the Netherlands, 1989.

[4] C. Artigues, P. Michelon, and S. Reusser. Insertion techniques for statric and dy-
namic resource–constrained project scheduling.European Journal of Operational
Research, 149:249–267, 2003.

[5] T. Baar, P. Brucker, and S. Knust. Tabu-search algorithms and lower bounds for the
resource-constrained project scheduling problem. In S. Voss, S. Martello, I. Osman,
and C. Roucairol, editors,Meta-heuristics: Advances and trends in local search
paradigms for optimization, pages 1–8. Kluwer Academic Publishers, 1998.

[6] C. E. Bell and J. Han. A new heuristic solution method in resource-constrained
project scheduling.Naval Research Logistics, 38:315–331, 1991.

[7] J. Błȧzewicz, J. Lenstra, and A. Rinnooy Kan. Scheduling subject to resource con-
straints: Classification and complexity.Discrete Applied Mathematics, 5:11–24,
1983.

[8] F. F. Boctor. Some efficient multi–heuristic procedures for resource–constrained
project scheduling.European Journal of Operational Research, 49:3–13, 1990.

16

[9] F. F. Boctor. An adaptation of the simulated annealing algorithm for solving
resource-constrained project scheduling problems.International Journal of Pro-
duction Research, 34:2335–2351, 1996.

[10] K. Bouleimen and H. Lecocq. A new efficient simulated annealing algorithm for the
resource–constrained project scheduling problem and its multiple modes version.
European Journal of Operational Research, 149:268–281, 2003.

[11] J. H. Cho and Y. D. Kim. A simulated annealing algorithm for resource-constrained
project scheduling problems.Journal of the Operational Research Society, 48:736–
744, 1997.

[12] J. Coelho and L. Tavares. Comparative analysis of meta–heuricstics for the resource
constrained project scheduling problem. Technical report, Department of Civil En-
gineering, Instituto Superior Tecnico, Portugal, 2003.

[13] D. F. Cooper. Heuristics for scheduling resource–constrained projects: An experi-
mental investigation.Management Science, 22:1186–1194, 1976.

[14] D. F. Cooper. A note on serial and parallel heuristics for resource–constrained
project scheduling.Foundations of Control Engineering, 2:131–133, 1977.

[15] E. M. Davies. An experimental investigation of resource allocation in mulitactivity
projects.Operations Research Quarterly, 24:587–591, 1973.

[16] E. W. Davis and J. H. Patterson. A comparison of heuristic and optimum solutions in
resource–constrained project scheduling.Management Science, 21:944–955, 1975.

[17] D. Debels, B. De Reyck, R. Leus, and M. Vanhoucke. A hybrid scatter search /
Electromagnetism meta–heuristic for project scheduling.European Journal of Op-
erational Research, 2004. to appear.

[18] E. Demeulemeester and W. Herroelen.Project scheduling – A research handbook.
Kluwer Academic Publishers, Boston, 2002.

[19] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony
of cooperating agents.IEEE Transactions on Systems, Man, and Cybernetics, Part
B, 26:29–41, 1996.

[20] E. A. Elsayed. Algorithms for project scheduling with resource constraints.Inter-
national Journal of Production Research, 20:95–103, 1982.

[21] K. Fleszar and K. Hindi. Solving the resource–constrained project scheduling prob-
lem by a variable neighbourhood search.European Journal of Operational Re-
search, 155:402–413, 2004.

[22] F. Glover, M. Laguna, and R. Marti. Fundamentals of scatter search and path relink-
ing. Control and Cybernetics, 29(3):653–684, 2000.

17

[23] J. Gonçalves and J. Mendes. A random key based genetic algorithm for the resource–
constrained project scheduling problem. Technical report, Departamento de Engen-
haria, Universidade do Porto, 2003.

[24] S. Hartmann. A competitive genetic algorithm for resource-constrained project
scheduling.Naval Research Logistics, 45:733–750, 1998.

[25] S. Hartmann. A self-adapting genetic algorithm for project scheduling under re-
source constraints.Naval Research Logistics, 49:433–448, 2002.

[26] S. Hartmann and R. Kolisch. Experimental evaluation of state–of–the–art heuris-
tics for the resource–constrained project scheduling problem.European Journal of
Operational Research, 127:394–407, 2000.

[27] W. Herroelen, E. Demeulemeester, and B. De Reyck. Resource–constrained project
scheduling — A survey of recent developments.Computers & Operations Research,
25(4):279–302, 1998.

[28] K. S. Hindi, H. Yang, and K. Fleszar. An evolutionary algorithm for resource-
constrained project scheduling.IEEE Transactions on Evolutionary Computation,
6:512–518, 2002.

[29] R. Klein. Biderectional planning: improving priority rule based heuristics for
scheduling resource–constrained projects.European Journal of Operational Re-
search, 127:619–638, 2000.

[30] R. Klein. Project scheduling with time–varying resource constraints.International
Journal of Production Research, 38(16):3937–3952, 2000.

[31] Y. Kochetov and A. Stolyar. Evolutionary local search with variable neighborhood
for the resource constrained project scheduling problem. InProceedings of the 3rd
International Workshop of Computer Science and Information Technologies, Russia,
2003.

[32] U. Kohlmorgen, H. Schmeck, and K. Haase. Experiences with fine-grained parallel
genetic algorithms.Annals of Operations Research, 90:203–319, 1999.

[33] R. Kolisch.Project scheduling under resource constraints — Efficient heuristics for
several problem classes. Physica, Heidelberg, 1995.

[34] R. Kolisch. Efficient priority rules for the resource-constrained project scheduling
problem.Journal of Operations Management, 14:179–192, 1996.

[35] R. Kolisch. Serial and parallel resource–constrained project scheduling methods
revisited: Theory and computation.European Journal of Operational Research,
90:320–333, 1996.

[36] R. Kolisch and A. Drexl. Adaptive search for solving hard project scheduling prob-
lems.Naval Research Logistics, 43:23–40, 1996.

18

[37] R. Kolisch and S. Hartmann. Heuristic algorithms for solving the resource-
constrained project scheduling problem: Classification and computational analysis.
In J. Weglarz, editor,Project scheduling: Recent models, algorithms and applica-
tions, pages 147–178. Kluwer Academic Publishers, 1999.

[38] R. Kolisch and R. Padman. An integrated survey of deterministic project scheduling.
OMEGA International Journal of Management Science, 29(3):249–272, 2001.

[39] R. Kolisch and A. Sprecher. PSPLIB — A project scheduling problem library.Eu-
ropean Journal of Operational Research, 96:205–216, 1996.

[40] R. Kolisch, A. Sprecher, and A. Drexl. Characterization and generation of a general
class of resource–constrained project scheduling problems.Management Science,
41(10):1693–1703, 1995.

[41] S. R. Lawrence. Resource constrained project scheduling – A computational com-
parison of heuristic scheduling techniques. Technical report, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, 1985.

[42] J.-K. Lee and Y.-D. Kim. Search heuristics for resource-constrained project schedul-
ing. Journal of the Operational Research Society, 47:678–689, 1996.

[43] V. J. Leon and B. Ramamoorthy. Strength and adaptability of problem-space based
neighborhoods for resource-constrained scheduling.OR Spektrum, 17:173–182,
1995.

[44] K. Y. Li and R. J. Willis. An iterative scheduling technique for resource-constrained
project scheduling.European Journal of Operational Research, 56:370–379, 1992.

[45] H. E. Mausser and S. R. Lawrence. Exploiting block structure to improve resource–
constrained project schedules. Technical report, Graduate School of Business Ad-
ministration, University of Colorado, 1995.

[46] D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for resource-
constrained project scheduling.IEEE Transactions on Evolutionary Computation,
6:333–346, 2002.

[47] N. Mladenovic and P. Hansen. Variable neighborhood search.Computers & Oper-
ations Research, 24:1097–1100, 1997.

[48] R. Möhring, A. Schulz, F. Stork, and M. Uetz. Solving project scheduling problems
by minimum cut computations.Management Science, 49(3):330 – 350, 2003.

[49] K. S. Naphade, S. D. Wu, and R. H. Storer. Problem space search algorithms for
resource-constrained project scheduling.Annals of Operations Research, 70:307–
326, 1997.

19

[50] K. Nonobe and T. Ibaraki. Formulation and tabu search algorithm for the resource
constrained project scheduling problem. In C. C. Ribeiro and P. Hansen, editors,Es-
says and Surveys in Metaheuristics, pages 557–588. Kluwer Academic Publishers,
2002.

[51] O. Oguz and H. Bala. A comparative study of computational procedures for the
resource constrained project scheduling problem.European Journal of Operational
Research, 72:406–416, 1994.

[52] L. Özdamar and G. Ulusoy. A local constraint based analysis approach to project
scheduling under general resource constraints.European Journal of Operational
Research, 79:287–298, 1994.

[53] L. Özdamar and G. Ulusoy. A survey on the resource–constrained project scheduling
problem.IIE Transactions, 27:574–586, 1995.

[54] L. Özdamar and G. Ulusoy. An iterative local constraint based analysis for solving
the resource-constrained project scheduling problem.Journal of Operations Man-
agement, 14:193–208, 1996.

[55] L. Özdamar and G. Ulusoy. A note on an iterative forward/backward scheduling
technique with reference to a procedure by Li and Willis.European Journal of
Operational Research, 89:400–407, 1996.

[56] M. Palpant, C. Artigues, and P. Michelon. LSSPER: Solving the resource–
constrained project scheduling problem with large neighbourhood search.Annals
of Operations Research, 131:237–257, 2004.

[57] J. H. Patterson. Alternate methods of project scheduling with limited resources.
Naval Research Logistics Quarterly, 20:767–784, 1973.

[58] J. H. Patterson. Project scheduling: The effects of problem structure on heuristic
performance.Naval Research Logistics Quarterly, 23:95–123, 1976.

[59] E. Pinson, C. Prins, and F. Rullier. Using tabu search for solving the resource-
constrained project scheduling problem. InProceedings of the fourth international
workshop on project management and scheduling, pages 102–106. Leuven, Bel-
gium, 1994.

[60] B. Pollack-Johnson. Hybrid structures and improving forecasting and scheduling in
project management.Journal of Operations Management, 12:101–117, 1995.

[61] A. Pritsker, L. Watters, and P. Wolfe. Multiproject scheduling with limited resources:
A zero–one programming approach.Management Science, 16:93–107, 1969.

[62] S. E. Sampson and E. N. Weiss. Local search techniques for the general-
ized resource-constrained project scheduling problem.Naval Research Logistics,
40:665–675, 1993.

20

[63] A. Schirmer. Case–based reasoning and improved adaptive search for project
scheduling.Naval Research Logistics, 47:201–222, 2000.

[64] A. Schirmer and S. Riesenberg. Parameterized heuristics for project scheduling
— Biased random sampling methods. Manuskripte aus den Instituten für Betrieb-
swirtschaftslehre 456, Universität Kiel, Germany, 1997.

[65] A. Schirmer and S. Riesenberg. Class-based control schemes for parameterized
project scheduling heuristics. Manuskripte aus den Instituten für Betriebswirtschaft-
slehre 471, Universität Kiel, Germany, 1998.

[66] L. R. Shaffer, J. B. Ritter, and W. L. Meyer.The critical-path method. McGraw-Hill,
New York, 1965.

[67] A. Sprecher. Scheduling resource-constrained projects competetively at modest
memory requirements.Management Science, 46:710–723, 2000.

[68] A. Sprecher. Network decomposition techniques for resource-constrained project
scheduling.Journal of the Operational Research Society, 53(4):405–414, 2002.

[69] A. Thesen. Heuristic scheduling of activities under resource and precedence restric-
tions. Management Science, 23:412–422, 1976.

[70] P. R. Thomas and S. Salhi. An investigation into the relationship of heuristic perfor-
mance with network–resource characteristics.Journal of the Operational Research
Society, 48:34–43, 1997.

[71] P. R. Thomas and S. Salhi. A tabu search approach for the resource constrained
project scheduling problem.Journal of Heuristics, 4:123–139, 1998.

[72] Y. C. Toklu. Application of genetic algorithms to construction scheduling with or
without resource constraints.Canadian Journal of Civil Engineering, 29:421–429,
2002.

[73] P. Tormos and A. Lova. A competitive heuristic solution technique for resource-
constrained project scheduling.Annals of Operations Research, 102:65–81, 2001.

[74] P. Tormos and A. Lova. An efficient multi-pass heuristic for project scheduling with
constrained resources.International Journal of Production Research, 41(5):1071–
1086, 2003.

[75] P. Tormos and A. Lova. Integrating heuristics for resource constrained project
scheduling: One step forward. Technical report, Department of Statistics and Oper-
ations Research, Universidad Politécnica de Valencia, 2003.

[76] G. Ulusoy and L.Özdamar. Heuristic performance and network/resource charac-
teristics in resource-constrained project scheduling.Journal of the Operational Re-
search Society, 40:1145–1152, 1989.

21

[77] V. Valls, F. Ballestin, and M. S. Quintanilla. A hybrid genetic algorithm for the
RCPSP. Technical report, Department of Statistics and Operations Research, Uni-
versity of Valencia, 2003.

[78] V. Valls, F. Ballestin, and M. S. Quintanilla. Justification and RCPSP: A technique
that pays.European Journal of Operational Research, 2004. Forthcoming.

[79] V. Valls, F. Ballestin, and M. S. Quintanilla. A population-based approach to the
resource-constrained project scheduling problem.Annals of Operations Research,
131:305–324, 2004.

[80] V. Valls, M. A. Pérez, and M. S. Quintanilla. Heuristic performance in large
resource-constrained projects. Technical Report 92-2, Department of Statistics and
Operations Research, University of Valencia, 1992.

[81] V. Valls, M. S. Quintanilla, and F. Ballestin. Resource-constrained project schedul-
ing: A critical activity reordering heuristic.European Journal of Operational Re-
search, 2004. Forthcoming.

[82] G. E. Whitehouse and J. R. Brown. GENRES: An extension of Brooks algorithm for
project scheduling with resource constraints.Computers & Industrial Engineering,
3:261–268, 1979.

22

