
7 HEURISTIC ALGORITHMS FOR

SOLVING THE RESOURCE-CONSTRAINED

PROJECT SCHEDULING PROBLEM:

CLASSIFICATION AND COMPUTATIONAL

ANALYSIS

Rainer Kolisch

S�onke Hartmann

Christian{Albrechts{Universit�at zu Kiel

7.1 INTRODUCTION

The resource constrained project scheduling problem (RCPSP) can be given as
follows. A single project consists of a set J = f0; 1; : : : ; n; n + 1g of activities
which have to be processed. Fictitious activities 0 and n+ 1 correspond to the
\project start" and to the \project end", respectively. The activities are inter-
related by two kinds of constraints. First, precedence constraints force activity
j not to be started before all its immediate predecessor activities comprised
in the set Pj have been �nished. Second, performing the activities requires

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

resources with limited capacities. We have K resource types, given by the set
K = f1; : : : ;Kg. While being processed, activity j requires rj;k units of re-
source type k 2 K during every period of its non{preemptable duration pj .
Resource type k has a limited capacity of Rk at any point in time. The pa-
rameters pj , rj;k, and Rk are assumed to be deterministic; for the project start
and end activities we have pj = 0 and rj;k = 0 for all k 2 K. The objective of
the RCPSP is to �nd precedence and resource feasible completion times for all
activities such that the makespan of the project is minimized. Figure 7:1 gives
an example of a project comprising n = 6 activities which have to be scheduled
subject to K = 1 renewable resource type with a capacity of 4 units. A feasible
schedule with an optimal makespan of 13 periods is represented in Figure 7:2.

0 7

2

1

4

3

6

5

K = 1; R1 = 4

j

pj/rj;1

0/0 0/0

3/2

4/3

2/4

2/4

1/3

4/2

�
�
���

@
@
@@R -

-

-

-

�
�
���

@
@
@@R

Figure 7:1 Project instance

1 2 3 4 5 6 7 8 9 10 11 12 13 t

1

2

3

4

R1

-

6

2
4

6

1

3
5

Figure 7:2 Example schedule

Let Fj denote the �nish time of activity j. A schedule S is given by a vector
of �nish times (F1; F2; : : : ; Fn). Let A(t) = fj 2 J j Fj � pj � t < Fjg be the
set of activities which are being processed (active) at time instant t. We now

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

can provide the conceptual decision model (7.1) { (7.4) (cf. Christo�des et al.
1987).

Min Fn+1 (7.1)

Fh � Fj � pj j = 1; : : : ; n + 1; h 2 Pj (7.2)X
j2A(t)

rj;k � Rk k 2 K; t � 0 (7.3)

Fj � 0 j = 1; : : : ; n + 1 (7.4)

The objective function (7.1) minimizes the �nish time of the project end
activity and thus the makespan of the project. Constraints (7.2) enforce the
precedence constraints between activities, and constraints (7.3) limit for each
resource type k and each time instant t that the resource demand of the ac-
tivities which are currently processed does not exceed the capacity. Finally,
(7.4) de�ne the decision variables. (7.1) { (7.4) is a conceptual model since the
sets A(t) are a function of the decision variables. Hence, the model cannot be
solved with mixed integer programming (MIP) techniques. In order to solve
the RCPSP with MIP{solvers such as CPLEX (cf. Bixby 1996), one has to
employ the 0{1 problem formulation of Pritsker et al. (1969).

The RCPSP is denoted in Chapter 1 of this book (cf. Herroelen et al.
1998) as m; 1=cpm=Cmax where a number of activities which are precedence
related by �nish{start relationship with zero time lags have to be scheduled
on m renewable resource types such that the maximal completion time of all
activities Cmax is minimized.

It has been shown by B la_zewicz et al. (1983) that the RCPSP as a gener-
alization of the classical job shop scheduling problem belongs to the class of
NP{hard optimization problems. Therefore, heuristic solution procedures are
indispensable when solving large problem instances as they usually appear in
practical cases. Since 1963 when Kelley (1963) introduced a schedule generation
scheme, a large number of di�erent heuristics algorithms have been suggested
in the literature.

The great number of optimal approaches (for a survey cf. Kolisch and Pad-
man 1997) are mainly for generating benchmark solutions. Currently, the most
competitive exact algorithms seem to be the ones of Brucker et al. (1998),
Demeulemeester and Herroelen (1997a), Mingozzi et al. (1998) and Sprecher
(1996).

In what follows we will give an appraising survey of heuristic approaches for
the RCPSP. We start in Section 7.2 with schedule generation schemes which
are essential to construct feasible schedules. In Section 7.3 we show how these
schemes are employed in priority rule based methods. Section 7.4 is devoted to

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

metaheuristic algorithms such as simulated annealing, tabu search, and genetic
algorithms. Heuristics which do neither belong to the class of priority rule based
methods nor to metaheuristic approaches are treated in Section 7.5. In Section
7.6 we will report about a comparison of priority rule based and metaheuristic
heuristics for the RCPSP. We end with a summary and an outlook on research
opportunities in Section 7.7.

7.2 SCHEDULE GENERATION SCHEMES

Schedule generation schemes (SGS) are the core of most heuristic solution pro-
cedures for the RCPSP. SGS start from scratch and build a feasible schedule by
stepwise extension of a partial schedule. A partial schedule is a schedule where
only a subset of the n + 2 activities have been scheduled. There are two dif-
ferent SGS available. They can be distinguished w.r.t the incrementation into
activity{ and time{incrementation. The so{called serial SGS performs activity{
incrementation and the so{called parallel SGS performs time{incrementation.

7.2.1 Serial Schedule Generation Scheme

We begin with a description of the serial SGS. It consists of g = 1; : : : ; n
stages, in each of which one activity is selected and scheduled at the earliest
precedence{ and resource{feasible completion time. Associated with each stage
g are two disjoint activity sets. The scheduled set Sg comprises the activities
which have been already scheduled, the eligible set Dg comprises all activities
which are eligible for scheduling. Note that the conjunction of Sg and Dg

does not give the set of all activities J because, generally, there are so{called
ineligible activities, i.e. activities which have not been scheduled and can not be
scheduled at stage g because not all of their predecessors have been scheduled.
Let ~Rk(t) = Rk �

P
j2A(t) rj;k be the remaining capacity of resource type k

at time instant t and let Fg = fFj j j 2 Sgg be the set of all �nish times. Let
further be Dg = fj 2 J n Sg j Pj � Sgg the set of eligible activities. We can
now give the following description of the serial SGS.

Serial SGS

Initialization: F0 = 0;S0 = f0g ;
For g = 1 to n do

Calculate Dg , Fg, ~Rk(t) (k 2 K; t 2 Fg)
Select one j 2 Dg

EFj = maxh2Pj fFhg+ pj
Fj = min ft 2 [EFj � pj ; LFj � pj] \ Fg j

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

rj;k � ~Rk(�); k 2 K; � 2 [t; t + pj [\ Fg

o
+ pj

Sg = Sg�1 [fjg

Fn+1 = maxh2Pn+1 fFhg

The initialization assigns the dummy source activity j = 0 a completion
time of 0 and puts it into the partial schedule. At the beginning of each step
g, the decision set Dg, the set of �nish times Fg, and the remaining capacities
~Rk(t) at the �nish times t 2 Fg are calculated. Afterwards, one activity j is
selected from the decision set. The �nish time of j is calculated by �rst deter-
mining the earliest precedence feasible �nish time EFj and then calculating the
earliest (precedence{ and) resource{feasible �nish time Fj within [EFj ; LFj].
LFj denotes the latest �nish time as calculated by backward recursion (cf. El-
maghraby 1977) from an upper bound of the project's �nish time T . Table 7:1
reports the serial SGS when generating the schedule given in Figure 7:2.

g 1 2 3 4 5 6

Dg f1,2g f1,4g f1,6g f3,6g f3g f5g
j 2 4 1 6 3 5

Table 7:1 Example for serial SGS

The serial SGS generates always feasible schedules which are for the resource{
unconstrained scheduling problem (7.1), (7.2), and (7.4) optimal. Kolisch
(1996a) has shown that the serial SGS generates active schedules, that is sched-
ules S = (F1; F2; : : : ; Fn) where none of the activities can be started earlier
without delaying some other activity. For scheduling problems with regular
performance measure (for a de�nition of the latter cf. to Sprecher et al. 1995)
such as makespan minimization, the optimal solution will always be in the set
of active schedules. The time complexity of the serial SGS as given above is
O(n2 �K) (cf. Pinson et al. 1994).

Let jg denote the activity which is selected in iteration g. Then, an exe-
cution of the serial SGS can be recorded by a list � = hj1; j2; : : : ; jn] which
prescribes that activity jg has been scheduled in iteration g. Note, that this
list is precedence feasible, i.e., we have Pjg � fj1; : : : ; jg�1g (cf. Hartmann
1997a). The list for the above given example is � = h2; 4; 1; 6; 3; 5]. Given a list
�, we can now give a special case of the serial SGS, namely the serial SGS for
activity lists.

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

Serial SGS for Activity Lists

Initialization: F0 = 0;S0 = f0g ;
For g = 1 to n do

Calculate Fg , ~Rk(t) (k 2 K; t 2 Fg)
j = jg
EFj = maxh2Pj fFhg+ pj
Fj = min ft 2 [EFj � pj ; LFj � pj] \ Fg j

rj;k � ~Rk(�); k 2 K; � 2 [t; t + pj [\ Fg

o
+ pj

Sg = Sg�1 [fjg

Fn+1 = maxh2Pn+1 fFhg

The serial SGS for activity lists plays an important role in classical machine
scheduling where it is referred to as list scheduling (cf. Kim 1995 and Schutten
1996). Since the serial SGS for activity lists is a special case of the serial
SGS, it generates active schedules. Hence, there is always a list �� for which
list scheduling will generate an optimal schedule when a regular measure of
performance is considered.

7.2.2 Parallel Schedule Generation Scheme

The parallel scheduling scheme does time incrementation. For each iteration
g there is a schedule time tg . Activities which have been scheduled up to g
are either element of the complete set Cg or of the active set Ag . The com-
plete set comprises all activities which have been completed up to tg, i.e.,
Cg = fj 2 J j Fj � tgg and the active set comprises all activities which are
active at tg, i.e., Ag = A(tg) = fj 2 J j Fj � pj � t < Fjg. The eligible set Dg

comprises all activities which can be precedence{ and resource{feasibly started

at tg, i.e., Dg =
n
j 2 J n (Cg [Ag) j Pj � Cg ^ rj;k � ~Rk(tg) (k 2 K)

o
. The

remaining capacity at tg is ~Rk(tg) = Rk �
P

j2Ag
rj;k. An algorithmic descrip-

tion of the parallel SGS can be given as follows:

Parallel SGS

Initialization: g = 0; tg = 0;A0 = f0g ; C0 = f0g ; ~Rk(0) = Rk

While j Ag [Cg j� n do

(1) g := g + 1
tg = minj2Ag

fFjg

Calculate Cg , Ag, ~Rk(tg), Dg

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

(2) While Dg 6= ; do

Select one j 2 Dg

Fj = tg + pj
Calculate ~Rk(tg), Ag , Dg

Fn+1 = maxh2Pn+1 fFhg

The initilization sets the schedule time to 0, assigns the project start activity
to the active and the complete set and sets the available capacity. Each iteration
consists of two steps. (1) determines the next schedule time tg, the associated

activity sets Cg, Ag , Dg and the available capacity ~Rk(tg). (2) schedules a
subset of the eligible activities to start at tg . Table 7:2 reports the parallel SGS
when generating the schedule given in Figure 7:2. Note that the parallel SGS
might have less than n stages but that there are exactly n selection decisions
which have to be made.

g 1 2 3 3 4 5 6

tg 0 4 6 6 9 10 12
Dg f1,2g f1,4g f1,6g f6g fg f3g f5g
j 2 4 1 6 3 5

Table 7:2 Example for parallel SGS

As the serial, so does the parallel SGS always generate feasible schedules
which are optimal for the resource{unconstrained case. It has been shown by
Kolisch (1996a) that the parallel SGS constructs non{delay schedules. A non{
delay schedule is a schedule where, even if activity preemption is allowed, none
of the activities can be started earlier without delaying some other activity.
The set of non{delay schedules is a subset of the set of active schedules. It thus
has, on average, a smaller cardinality. But it has the severe drawback that it
might not contain an optimal schedule with a regular performance measure.
E.g., in Kolisch (1996a) is is shown that out of 298 problem instances from
the set j30sm (cf. Kolisch et al. 1998) only 175, i.e. 59.73 % have an optimal
solution which is in the set of non{delay schedules. The time complexity of the
parallel SGS is O(n2 �K).

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

7.3 PRIORITY RULE BASED HEURISTICS

Priority rule based heuristics employ one or both of the SGS in order to con-
struct one or more schedules. The priority rule itself is used in order to select
an activity j from the decision set Dg . We �rst give a survey of di�erent pri-
ority rules. Thereafter we show how scheduling schemes and priority rules can
be combined in order to obtain di�erent priority rule based heuristics.

7.3.1 Priority Rules

A priority rule is a mapping which assigns each activity j in the decision set Dg

a value v(j) and an objective stating whether the activity with the minimum
or the maximum value is selected. In case of ties, one or several tie break-
ing rules have to be employed. The easiest ways to resolve ties is to choose
the activity with the smallest activity label. There has been an overwhelming
amount of research on priority rules for the RCPSP; cf. Alvarez{Vald�es and
Tamarit (1989a), Boctor (1990), Cooper (1976,1977), Davies (1973), Davis and
Patterson (1975), Elsayed (1982), Kolisch (1996b), Kolisch (1996a), Lawrence
(1985), �Ozdamar and Ulusoy (1994,1996b), Ulusoy and �Ozdamar (1989), Pat-
terson (1973,1976), Sha�er et al. (1965), Thesen (1976), Thomas and Salhi
(1997), Valls et al. (1992), and Whitehouse and Brown (1979).

Priority rules can be classi�ed according to di�erent criteria. W.r.t. to the
type of information employed to calculate v(j), we can distinguish network,
time, and resource based rules (cf. Alvarez{Vald�es and Tamarit 1989a and
Lawrence 1985) as well as lower and upper bound rules. Lower bound rules
calculate for each activity a lower bound of the objective function value, upper
bound rules calculate for each activity an upper bound of the objective function
value. W.r.t. the amount of information employed it can be distinguished in
local or global rules. Local rules employ only information from the activity
under consideration such as the processing time while global rules make use
of a wider range of information. A distinction into static and dynamic rules
is made w.r.t. the fact if the value v(j) remains constant or changes during
the iterations of the SGS. W.r.t. the SGS we can distinguish in rules which
can be employed in the serial, the parallel or both SGS. Table 7:3 gives an
overview of some well known priority rules. The MTS rule employs Sj , the
set of all (direct and indirect) successors of activity j. The WCS and RSM
rules employ AP = f(i; j) 2 Dg �Dg j i 6= jg, the set of all activity pairs (i; j)
which are in the decision set Dg . Finally, the WCS rule uses E(i; j), the earliest
precedence{ and resource{feasible start time of activity j if activity i is started
at the schedule time tg . Note that the RSM rule selects the activity with the
lowest priority value.

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

Rule Ref. v(j)

GRPW Alvarez{Vald�es, Tamarit (1989a) pj +
P

i2Sj
pi

LFT Davis, Patterson (1975) LFj
LST Kolisch (1995) LFj � pj
MSLK Davis, Patterson (1975) LFj � EFj
MTS Alvarez{Vald�es, Tamarit (1989a) j Sj j
RSM Sha�er et al. (1965) max(i;j)2APf0; tg + pj

�(LFi � pi)g
SPT Alvarez{Vald�es, Tamarit (1989a) pj
WCS Kolisch (1996b) LFj � pj

�max(i;j)2AP fE(i; j)g

Table 7:3 Priority Rules

7.3.2 Proposed Methods

Priority rule based heuristics combine priority rules and schedule generation
schemes in order to construct a speci�c algorithm. If the heuristic generates a
single schedule, it is called a single pass method, if it generates more than one
schedule, is is referred to as multi pass method.

Single Pass Methods. The oldest heuristics are single pass methods which
employ one SGS and one priority rule in order to obtain one feasible sched-
ule. Examples are the heuristics of Alvarez{Vald�es and Tamarit (1989), Boctor
(1990), Cooper (1976,1977), Davies (1973), Davis and Patterson (1975), El-
sayed (1982), Kolisch (1996a,b), Lawrence (1985), Patterson (1973,1976), The-
sen (1976), Valls et al. (1992), and Whitehouse and Brown (1979).

Recently, more elaborate priority rules have been proposed by Kolisch (1996b),
�Ozdamar and Ulusoy (1996b) as well as Ulusoy and �Ozdamar (1994). Kolisch
(1996b) developed, amongst other priority rules, the so{called worst case slack
(WCS) rule for the parallel SGS which is given in Table 7:3. �Ozdamar and
Ulusoy (1996b) as well as Ulusoy and �Ozdamar (1994) introduced the local
constraint based analysis (LCBA). LCBA employs the parallel SGS and decides
via feasibility checks and so{called essential conditions which activities have to
be selected and which activities have to be delayed at the schedule time.

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

Multi Pass Methods. There are many possibilities to combine SGS and
priority rules to a multi pass method. The most common ones are multi priority
rule methods, forward{backward scheduling methods, and sampling methods.
Multi priority rule methods employ the SGS several times. Each time

a di�erent priority rule is used. Often, the rules are used in the order of
descending solution quality. Boctor (1990) employed 7 di�erent rules in his
experimental study. Instead of using m priority rules in order to generate m
schedules, a virtually unlimited number of schedules can be generated by using
convex combinations of I priority rules v(j) =

PI

i=1 wi � vi(j) with wi � 0 for

all i and
PI

i=1 wi = 1. Examples of such approaches are given by Ulusoy and
�Ozdamar (1989) and Thomas and Salhi(1997). Ulusoy and �Ozdamar employed
a convex combination of I = 2 rules in order to generate 10 di�erent schedules.
Forward{backward scheduling methods employ an SGS in order to

iteratively schedule the project by alternating between forward and backward
scheduling. Forward scheduling is as outlined in Section 7.2. Backward schedul-
ing applies one of the SGS to the reversed precedence network where the former
end activity n + 1 has become the new start activity. The priority values are
usually obtained from the start or completion times of the lastly generated
schedule. Forward{backward scheduling methods have been proposed by, e.g.,
Li and Willis (1992) as well as �Ozdamar and Ulusoy (1996a,b).
Sampling methods make generally use of one SGS and one priority rule.

Di�erent schedules are obtained by biasing the selection of the priority rule
through a random device. Instead of a priority value v(j) a selection probabil-
ity p(j) is computed. At selection decision g of the SGS, p(j) is the probability
that activity j from the decision set Dg will be selected. Dependent on how the
probabilities are computed, one can distinguish random sampling, biased ran-
dom sampling, and regret based biased random sampling (cf. Kolisch 1996a).
Random sampling (RS) assigns each activity in the decision set the same prob-
ability p(j) = 1=jDgj. Biased random sampling (BRS) employs the priority
values directly in order to obtain the selection probabilities. If the objective of
the priority rule is to select the activity with the highest priority value, then the

probability is calculated to p(j) = v(j)=
�P

i2Dg
v(i)

�
. Biased random sam-

pling methods have been applied by Alvarez{Vald�es and Tamarit (1989b) and
Cooper (1976). Schirmer and Riesenberg (1997) propose a modi�cation called
normalized biased random sampling (NBRS) which essentially ensures that the
selection probability of the activity with the smallest (highest) priority value is
the same when seeking for the activity with the highest (smallest) priority value.
Regret based biased random sampling (RBRS) uses the priority values indirectly
via regret values. If the objective is again to select the activity with the highest
priority value, the regret value r(j) is the absolute di�erence between the pri-

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

ority value v(j) of the activity under consideration and the worst priority value
of all activities in the decision set, i.e. r(j) = v(j) � mini2Dg

fv(i)g. Before
calculating the selection probabilities based on the regret values, the latter can
be modi�ed by r0(j) = (r(j) + �)

�
(cf. Drexl 1991). Adding the constant � > 0

to the regret value assures that the selection probability for each activity in the
decision set is greater than zero and thus every schedule of the population can
be generated. With the choice of the parameter � the amount of bias can be
controlled. A high � will cause no bias and thus deterministic activity selection
while an � of zero will cause maximum bias and hence random activity selec-
tion. Kolisch (1995) found out that, in general, � = � = 1 will provide good
results. Drexl (1991) uses � = mini2Dg

v(i). Schirmer and Riesenberg (1997)
propose a modi�ed regret based biased random sampling (MRBRS) where �
is determined dynamically. Experimental comparisons performed by Kolisch
(1995) as well as Schirmer and Riesenberg (1997) revealed (modi�ed) regret
based biased random sampling as the best sampling approach. Table 7:4 gives
examplary di�erent selection probabilities for j Dg j= 3, � = 1, and � = 1.

j 2 Dg 1 2 3
v(j) 11 13 20

Random Sampling 0.33 0.33 0.33
Biased Random Sampling 0.25 0.30 0.45
Regret Based Biased Random Sampling 0.07 0.21 0.72

Table 7:4 Selection Probabilities p(j) for Di�erent Sampling Methods

A hybrid multi pass approach has been proposed by Kolisch and Drexl
(1996). The heuristic applies the serial SGS with the LFT{priority rule and
the parallel SGS with the WCS{priority rule while employing deterministic and
regret based sampling activity selection. The decision on the speci�c method
is based on an analysis of the problem at hand and the number of iterations
already performed. Partial schedules are discarded by the use of lower bounds.
Schirmer and Riesenberg (1998) have extended this approach by employing
both schedule generation schemes together with four di�erent priority rules
(MTS,LFT,LST,WCS) and two di�erent sampling schemes (MRBRS,RBRS).

Table 7:5 gives a survey of priority rule based heuristics for the RCPSP where
with `p' and `s' it is referred to the parallel and the serial SGS, respectively.
Note, that this convention holds for all tables in this chapter.

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

Author(s) SGS Priority Rule Sampling Passes

Alvarez{Vald�es/Tamarit
(1989a)

p several rules | single

Alvarez{Vald�es/Tamarit
(1989b)

p several rules BRS multi

Boctor (1990) p/s several rules | multi
Cooper (1976) s several rules BRS multi
Davis/Patterson (1975) p LFT and other | single
Kolisch (1996a) p/s several rules RBRS multi
Kolisch (1996b) p WCS and other | single
Kolisch (1995) p/s several rules RS/BRS/RBRS multi
Kolisch/Drexl (1996) p/s LFT/WCS RBRS multi
Li/Willis (1992) p start/�n. times | multi
�Ozdamar/Ulusoy
(1996a,1996b)

p LCBA | multi

�Ozdamar/Ulusoy (1994) p LCBA | single
Sha�er et al. (1965) p RSM | single
Schirmer/Riesenberg (1998) p/s several rules RBRS/MRBRS multi
Schirmer/Riesenberg (1997) p/s several rules several methods multi
Thomas/Salhi (1997) p convex comb. | multi

Ulusoy/�Ozdamar (1989) p convex comb. | multi

Table 7:5 Survey of priority rule based heuristics for the RCPSP

7.4 METAHEURISTIC APPROACHES

7.4.1 General Metaheuristic Strategies

Several metaheuristic strategies have been developed to solve hard optimization
problems. The following summary brie
y describes those general aproaches
that have been used to solve the RCPSP.

Simulated Annealing. Simulated Annealing (SA), introduced by Kirkpatrick
et al. (1983), originates from the physical annealing process in which a melted
solid is cooled down to a low{energy state. Starting with some initial solution,
a so{called neighbor solution is generated by slightly perturbing the current
one. If this new solution is better than the current one, it is accepted, and
the search proceeds from this new solution. Otherwise, if it is worse, the new
solution is only accepted with a probability that depends on the magnitude of

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

the deterioration as well as on a parameter called temperature. As the algo-
rithm proceeds, this temperature is reduced in order to lower the probability
to accept worse neighbors.

Clearly, SA can be viewed as an extension of a simple greedy procedure,
sometimes called First Fit Strategy (FFS), which immediately accepts a better
neighbor solution but rejects any deterioration.

Tabu Seach. Tabu Search (TS), developed by Glover (1989a,b), is essentially
a steepest descent/mildest ascent method. That is, it evaluates all solutions
of the neighborhood and chooses the best one, from which it proceeds further.
This concept, however, bears the possibility of cycling, that is, one may always
move back to the same local optimum one has just left. In order to avoid
this problem, a tabu list is set up as a form of memory for the search process.
Usually, the tabu list is used to forbid those neighborhood moves that might
cancel the e�ect of recently performed moves and might thus lead back to
a recently visited solution. Typically, such a tabu status is overrun if the
corresponding neighborhood move would lead to a new overall best solution
(aspiration criterion).

It is obvious that TS extends the simple steepest descent search, often called
Best Fit Strategy (BFS), which scans the neighborhood and then accepts the
best neighbor solution, until none of the neighbors improves the current objec-
tive function value.

Genetic Algorithms. Genetic Algorithms (GA), inspired by the process of
biological evolution, have been introduced by Holland (1975). In contrast to
the local search strategies above, a GA simultaneously considers a set or popu-
lation of solutions instead of only one. Having generated an initial population,
new solutions are produced by mating two existing ones (crossover) and/or
by altering an existing one (mutation). After producing new solutions, the
�ttest solutions \survive" and make up the next generation while the others
are deleted. The �tness value measures the quality of a solution, usually based
on the objective function value of the optimization problem to be solved.

7.4.2 Representations

Once a metaheuristic strategy has been chosen to attack a given optimization
problem, one has to select a suitable representation for solutions. Usually,
metaheuristic approaches for the RCPSP rather operate on representations of
schedules than on schedules themselves. Then an appropriate decoding proce-
dure must be selected to transform the representation into a schedule. Finally,
operators are needed to produce new solutions w.r.t. the selected representa-

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

tion. A unary operator constructs a new solution from an existing one, that
is, it makes up the neighborhood move in local search procedure such as SA
and TS as well as the mutation in a GA. A binary operator constructs a new
solution from two existing ones, as done by crossover in a GA.

This subsection summarizes �ve representations reported in the literature
that have been used within metaheuristic approaches to solve the RCPSP. For
each representation, we give the related decoding procedures and operators. In
order to keep the description short, we will restrict the de�nition of binary oper-
ators to the one{point crossover type for the di�erent representations. Roughly
speaking, the one{point crossover splits two existing solutions and takes one
part from the �rst and one part from the second solution in order to form a
new one. Other general crossover types that are well known from the GA lit-
erature (such as two{point and uniform crossover) can be easily obtained from
extending the one{point de�nitions given here, see e.g. Hartmann (1997a).

Activity List Representation. In the activity list representation, a prece-
dence feasible activity list

� = hj1; j2; : : : ; jn]

is given, in which each activity must have a higher index than each of its
predecessors. As shown in Section 7.2, the serial SGS can be used as a decoding
procedure to obtain a schedule from an activity list. Note, however, that the
parallel scheme cannot be applied without modi�cation. As is easily veri�ed,
the serial SGS transforms example activity list

�E = h2; 4; 6; 1; 3; 5]

for the project of Figure 7:1 into the schedule of Figure 7:2. The initial solu-
tion(s) can be generated by randomly selecting an activity from the decision
set in each step of the SGS. To obtain better solution quality, one can also use
a priority rule or priority rule based sampling scheme for choosing an eligible
activity. In either case, recording the activities in the order of their selection
results in a (precedence feasible) activity list.

Several unary operators have been proposed for the activity list representa-
tion, see e.g. Della Croce (1995). The so-called pairwise interchange is de�ned
as swapping two activities jq and js, q; s 2 f1; : : : ; ng with q 6= s, if the result-
ing activity list is precedence feasible. As a special case, the adjacent pairwise
interchange swaps two activities jq and jq+1, q 2 f1; : : : ; n � 1g, that are ad-
jacent in � but not precedence related. Considering again the example project
of Figure 7:1, we could apply the adjacent pairwise interchange for q = 3 to �E

as given above and obtain

�N = h2; 4; 1; 6; 3; 5] :

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

Furthermore, the simple shift operator selects some activity jq and inserts it
immediately after some other activity js, if the precedence constraints are not
violated. In our example, shifting activity 6 immediately after activity 3 in �E

results in neighbor activity list

�N
0

= h2; 4; 1; 3; 6; 5] :

More sophisticated shift operators have been proposed by Baar et al. (1997)
for the RCPSP. They make use of the schedule S(�) that is represented by
the current activity list �. The operators are based on the notion of a critical
arc which is de�ned as a pair of successively scheduled activities (i; j), that is,
Fi + pj = Fj in S(�). The underlying idea is that at least one critical arc must
become non{critical to improve the current schedule. Hence, Baar et al. de�ne
three shift operators that may cancel a critical arc. They extend the simple
shift by allowing more than one activity to be shifted. Without giving the
formal de�nitions here, we illustrate such a shift operator on the critical arc
(4,1) in the schedule S(�E) shown in Figure 7:2: Shifting activity 4 and its
successor activity 6 immediately after activity 1 leads to neighbor activity list

�N
00

= h2; 1; 4; 6; 3; 5] :

As a binary operator, i.e. as crossover for a GA, Hartmann (1997a) used
the following technique: Given two \parent" activity lists, a \mother" �M =

jM1 ; : : : ; jMn

�
and a \father" �F =

jF1 ; : : : ; j

F
n

�
, the \child" activity list �C =

jC1 ; : : : ; j
C
n

�
is de�ned as follows: After drawing a random integer q with 1 �

q < n, the positions i = 1; : : : ; q are taken from the \mother" �M by setting
jCi := jMi . The activity list of positions i = q + 1; : : : ; n is taken from the
\father" �F . However, the jobs that have already been taken from the mother
may not be considered again. We obtain jCi := jFk , where k is the lowest index
such that jFk =2 fjC1 ; : : : ; j

C
i�1g. Choosing q = 3, this de�nition is illustrated for

our project example by

�M = h1; 3; 2; 5; 4; 6] ;

�F = h2; 4; 6; 1; 3; 5] ;

�C = h1; 3; 2; 4; 6; 5] :

As shown by Hartmann (1997a), the \child" activity list �C resulting from
two precedence feasible \parent" activity lists �M and �F is also precedence
feasible.

Random Key Representation. Several researchers employed a represen-
tation which makes use of an array

� = (r1; r2; : : : ; rn)

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

that assigns a (typically real-valued) number rj to each activity j. Following
Bean (1994), we will call such an encoding random key representation. It is
similar to the priority value representation of Lee and Kim (1996) and Cho and
Kim (1997) and the problem-space based representation of Storer et al. (1992),
Leon and Ramamoorthy (1995), and Naphade et al. (1997), such that we will
discuss these three approaches in a uni�ed framework here.

For an initial solution, the random keys are usually chosen randomly (see
e.g. Lee and Kim 1996) or computed by some priority rule (see e.g. Leon and
Ramamoorthy 1995).

Both the parallel and the serial SGS can be used to derive a schedule from
�: On each stage g, we can select activity j with the highest random key
rj = maxfri j i 2 Dgg from the decision set Dg (clearly, if initialized with
e.g. the latest �nish time, one would select the activity with the minimum
random key). In other words, the random keys play the role of priority values.
Considering again our example project, we obtain the schedule of Figure 7:2
from applying either the parallel or the serial SGS to

�E = (0:58; 0:64; 0:31; 0:87; 0:09; 0:34) :

An alternative approach is proposed by Naphade et al. (1997). Here, the ran-
dom keys are used to perturb activity slacks which serve as priority values.

While both the parallel and the serial SGS as decoding procedures guarantee
that only feasible schedules are found, only the serial one ensures the existence
of at least one optimal schedule in the solution space, as discussed in Section 7.2.
In order to overcome the drawback of possible exclusion of all optimal solutions
by the parallel SGS, several researchers (see Cho and Kim 1997, Naphade et
al. 1997, and Leon and Ramamoorthy 1995) introduced di�erent modi�cations
of the parallel SGS as decoding procedures for the random key representation.
These essentially allow to delay a schedulable activity such that the search is
not restricted to non{delay schedules.

As a unary operator, any pairwise interchange of rj and ri can be employed,
including the adjacent pairwise interchange of rj and rj+1. Considering a
pairwise interchange with j = 2 and i = 4, an example neighbor of �E is

�N = (0:58; 0:87; 0:31; 0:64; 0:09; 0:34) :

In an approach for the job shop problem, Storer et al. (1992) proposed the
so{called problem{space based neighborhood which randomly reselects rnewj 2

[roldj � � �roldj ; roldj + � �roldj] from a uniform distribution, where � is a real-valued
constant. For this neighborhood de�nition with � = 0:1 an example neighbor
of �E is given by

�N
0

= (0:59; 0:62; 0:34; 0:89; 0:09; 0:33) :

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

The random key representation allows the application of the standard one-
point crossover as binary operator: Given a random integer q with 1 � q < n, a
new random key array �C = (rC1 ; : : : ; r

C
n) is derived by taking the �rst q random

keys from a \mother" array �M = (rM1 ; : : : ; rMn) and the remaining ones from
a \father" array �F = (rF1 ; : : : ; r

F
n). We obtain rCi = rMi for i = 1; : : : ; q and

rCi = rFi for i = q + 1; : : : ; n. An example for q = 3 is

�M = (0:58; 0:64; 0:31; 0:87; 0:09; 0:34) ;

�F = (0:12; 0:43; 0:99; 0:65; 0:19; 0:22) ;

�C = (0:58; 0:64; 0:31; 0:65; 0:19; 0:22) :

Priority Rule Representation. The priority rule representation, used by
e.g. Dorndorf and Pesch (1994) for the job shop problem and adapted by Hart-
mann (1997a) to the RCPSP, is based on a list of priority rules

� = h�1; �2; : : : ; �n] ;

where each �i is a priority rule. As decoding procedures, both the parallel
and the serial SGS can be used by selecting the i-th activity to be scheduled
according to priority rule �i. For our example project, the schedule of Figure
7:2 can be obtained from e.g.

�E = hLST, GRPW, MTS, LST, MSLK, LFT] :

The commonly used unary operator randomly selects a new priority rule for
some �i. For the example priority list �E as given above, a possible neighbor
is

�N = hMTS, GRPW, MTS, LST, MSLK, LFT] :

The binary operator, i.e. the one-point crossover, follows again the standard
de�nition. Given a random integer q with 1 � q < n, a new priority rule list
�C is derived by taking the �rst q priority rules from a \mother" list �M and
the remaining ones from a \father" list �F . Consider as an example q = 3 and

�M = hLST, GRPW, MTS, LST, MSLK, LFT] ;

�F = hLFT, GRPW, MSLK, SPT, LFT, GRPW] ;

�C = hLST, GRPW, MTS, SPT, LFT, GRPW] :

Shift Vector Representation. The shift vector representation has been
proposed by Sampson and Weiss (1993) for the RCPSP. A solution is repre-
sented by a shift vector

� = (�1; �2; : : : ; �n);

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

where �j is a nonnegative integer. As a decoding procedure, an extension of
the classical forward recursion (cf. Elmaghraby 1977) is used, in which the
start time Sj of an activity j is calculated as the maximum of the �nish times
of its predecessors plus the shift �j of activity j, that is, S0 = 0 and Sj =
maxfSh + ph jh 2 Pjg + �j for j = 1; : : : ; n+ 1. The following shift vector for
our example project leads to the schedule of Figure 7:2:

�E = (6; 0; 1; 0; 0; 0)

As this decoding procedure does not consider the resource constraints, a sched-
ule derived from a shift vector may be infeasible. This is illustrated by the
following shift vector which forces activities 1 and 4 to be simultaneously in
process, thus exceeding the resource capacity by 2 units:

�I = (4; 0; 1; 0; 0; 0)

Consequently, the objective function is extended by penalizing the violation of
the resource constraints.

The neighborhood of a shift vector � is given by those vectors that di�er
from � in exactly one position and do not lead to a project makespan that
exceeds some given upper bound. An example neighbor for shift vector �E

above is

�N = (6; 0; 1; 0; 1; 0) :

Schedule Scheme Representation. The schedule scheme representation
has been introduced by Brucker et al. (1998) for a branch{and{bound algo-
rithm for the RCPSP. In what follows we give a brief and rather informal
description. A schedule scheme (C;D;N; F) consists of four disjoint relations.
(i; j) 2 C implies that activity i must be �nished before activity j can be
started (conjunctions). (i; j) 2 D implies that activities i and j may not over-
lap (disjunctions). (i; j) 2 N implies that activities i and j must be processed
in parallel in at least one period (parallelity relations). For activities i and
j with (i; j) 2 F there are no restrictions (
exibility relations). A schedule
scheme represents those (not necessarily feasible) schedules in which the re-
lated relations are maintained. As a decoding procedure, Baar et al. (1997)
develop a heuristic that constructs a feasible schedule in which all relations of
C and D and a \large" number of parallelity relations N are satis�ed.

Baar et al. (1997) introduce a neighborhood de�nition which basically con-
sists of moves that transform
exibility relations into parallelity relations and
parallelity relations into
exibility relations. The neighborhood size is reduced
by a critical path calculation and impact estimations for the moves.

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

Paper Metah. Rep. SGS Operator

Baar et al. (1997) TS AL s crit. path shifts
TS SS related related moves

Bouleimen, Lecocq (1998) SA AL s shift
Cho, Kim (1997) SA RK mod. p pairw. int.
Hartmann (1997a) GA AL s two{point cr.

GA RK s two{point cr.
GA PR s two{point cr.

Kohlmorgen et al. (1998) GA RK s two{point cr.
Lee, Kim (1996) SA RK p pairw. int.

TS RK p pairw. int.
GA RK p one{point cr.

Leon, Ramamoorthy (1995) FFS RK mod. p problem{space
BFS RK mod. p problem{space
GA RK mod. p one{point cr.

Naphade et al. (1997) BFS RK mod. p problem{space
Pinson et al. (1994) TS AL s adj. pairw. int.

TS AL s pairw. int.
TS AL s shift

Sampson, Weiss (1993) SA-var. SV ext. recurs. related move

Table 7:6 Survey of metaheuristic strategies for the RCPSP

We do not discuss this representation and its neighborhood de�nition in more
detail here, referring the reader to the chapter of Brucker and Knust (1998) in
this book.

7.4.3 Proposed Methods

In this subsection, we brie
y describe the metaheuristic approaches which are
documented for the RCPSP. The references are listed in alphabetical order.
We have, however, restricted the list to those papers that consider the RCPSP,
while papers that cover its extensions (such as the multi-mode RCPSP) are not
included. A summarizing overview is given in Table 7:6. For each reference,
we denote the employed metaheuristic strategies together with the underlying
representation, the SGS, and the used operator. In case of a GA, we only
mention the crossover operator. The representation given in the third column
is abbriaviated as follows: AL stands for activity list, RK for random key, PR
for priority rule, SV for shift vector, and SS for schedule scheme.

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

Baar et al. (1997) develop two TS algorithms. The �rst one is based on the
activity list representation in accordance with the serial SGS. The neighbor-
hood is de�ned by three kinds of critical path based moves. Their second TS
approach employs the schedule scheme representation with the related decod-
ing procedure and neighborhood de�nition. Both TS algorithms use dynamic
tabu lists as well as priority based start heuristics.

Bouleimen and Lecocq (1998) propose an SA procedure based on the activity
list representation together with the serial SGS. For neighborhood moves, the
shift operator is used.

Cho and Kim (1997) modify the SA algorithm of Lee and Kim (1996) (see
below) by extending the random key representation in order to allow the delay
of schedulable activities within an adapted parallel SGS.

Hartmann (1997a) proposes a GA based on the activity list representation
and compares it to GAs which make use of the random key and priority rule
representations, respectively. All three approaches employ the serial SGS as
well as two{point crossover operators related to the respective representation.
In the activity list based GA, the regret based biased random sampling method
with the serial SGS and the LFT{rule (see Section 7.3) is used to determine
the initial generation.

Kohlmorgen et al. (1998) develop a GA which employs the random key
representation with standard two{point crossover. They test their approach on
a massively parallel computer.

Lee and Kim (1996) propose an SA algorithm, a TS procedure and a GA.
These three approaches are based on the random key representation with the
parallel SGS as decoding procedure. While SA and TS make use of a restricted
version of the pairwise interchange move, the GA employs the standard one{
point crossover.

Leon and Ramamoorthy (1995) test an FFS and a BFS approach as well as
a GA. They employ the problem{space based version of the random key repre-
sentation. The random keys are initialized with values computed by a priority
rule. A modi�ed variant of the parallel SGS serves as decoding procedure. The
unary operator is de�ned by the problem{space based neighborhood, and the
binary one is the standard one{point crossover.

Naphade et al. (1997) use the BFS concept with the problem{space based
variant of the random key representation. The random keys are initialized
with the latest �nish times of the activities and then modi�ed according to
the problem-space based neighborhood. As decoding procedure, they employ a
modi�ed parallel SGS, where the random keys are used to calculate slack based
priority values.

Pinson et al. (1994) suggest several variants of a TS approach based on the
activity list representation, the serial SGS, and a priority rule procedure for

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

computing a start solution. The variants di�er in the neighborhood de�nitions,
using the adjacent pairwise interchange, the (general) pairwise interchange, and
the shift move, respectively.

Sampson and Weiss (1993) suggest a local search procedure which can be
viewed as a variant of TA. Their approach is based on the shift vector repre-
sentation and the related neighborhood de�nition.

7.5 OTHER HEURISTICS

7.5.1 Truncated Branch and Bound Methods

Pollack{Johnson (1995) uses a so{called depth{�rst, jumptracking branch and
bound search of a partial solution tree. The algorithm is essentially a parallel
scheduling heuristic. Instead of scheduling the activity with the highest priority
value it branches on certain occasions such that one branch has the activity
with the highest priority value and the other branch has the activity with the
second highest priority value, which is scheduled next. Note, due to use of the
parallel SGS optimal solution might be excluded from the search space.

Sprecher (1996) employs his depth{�rst search branch and bound procedure
as a heuristic by imposing a time limit. The enumeration process is guided by
the so{called precedence tree which essentially branches on the activities in the
decision set of the serial SGS. Via backtracking, all precedence feasible activity
lists are (implicitly) enumerated. In order to obtain good solutions early in the
search process (and thus within the time limit), priority rules are applied to
select the most promising activity from the decision set for branching �rst.

7.5.2 Disjunctive Arc Based Methods

The basic idea of the disjunctive{arc{based approaches is to extend the prece-
dence relations (the set of conjunctive arcs) by adding additional arcs (the
disjunctive arcs) such that the minimal forbidden sets, i.e. sets of techno-
logically independent activities which cannot be scheduled simultaneously due
to resource constraints, are destroyed and thus the earliest �nish schedule is
feasible with respect to (precedence and) resource constraints.

Sha�er et al. (1965) restrict the scope, within their "resource scheduling
method", to those forbidden sets for which all activities in the earliest �nish
schedule are processed at the same time. The disjunctive arc which produces
the smallest increase in the earliest �nish time of the unique sink is introduced
and the earliest �nish schedule is recalculated. The algorithm terminates as
soon as a (precedence{ and) resource{feasible earliest �nish schedule is found.
Note that this approach can be transformed into a single-pass priority rule
method based on the parallel SGS, cf. Tables 7:3 and 7:5.

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

Alvarez{Vald�es and Tamarit (1989) propose four di�erent ways of destroy-
ing the minimal forbidden sets. The best results were achieved by applying the
following strategy: Beginning with the minimal forbidden sets of lowest cardi-
nality, one set is arbitrarily chosen and destroyed by adding the disjunctive arc
for which the earliest �nish time of the unique dummy sink is minimal.

Bell and Han (1991) present a two{phase algorithm for this problem. The
�rst phase is very similar to the approach of Sha�er et al. However, phase 2
tries to improve the feasible solution obtained by phase one as follows: after
removing redundant arcs, each disjunctive arc that is part of the critical path(s)
is temporarily cancelled and the phase 1 procedure is applied again.

7.5.3 Further Approaches

Integer programming based heuristics have been used by O~guz and Bala (1994).
The method employs the integer programming formulation originally proposed
by Pritsker et al. (1969). The planning horizon is divided in T periods of equal
length and the processing times pj have to be given as discrete multiples of one
period. The binary decision variable is xj;t = 1 if activity j is �nished at the
end of period t.

Mausser and Lawrence (1995) use block structures to improve the makespan
of projects. They start by generating a feasible solution with a parallel schedul-
ing scheme. Following this, they identify blocks which represent contiguous
time spans that completely contain all activities processed within it. Each
such block can be considered independent of the other blocks. The method
essentially reschedules individual blocks in order to shorten the overall project
length.

7.6 COMPUTATIONAL ANALYSIS

7.6.1 Test Design

This section reports on a computational comparison of several of the heuristics
summarized above. As test instances we have employed the standard sets j30,
j60, and j120 for the RCPSP which have been generated using ProGen (cf.
Kolisch et al. 1995). The sets j30 and j60 consist of 480 projects with n = 30
and n = 60 activities, respectively. The set j120 consists of 600 projects, each
with n = 120 activities. Details of these problem instances are given in Chapter
9 of this book (cf. Kolisch et al. 1998).

Each algorithm was tested by its author(s) using the original implementa-
tion. This allowed the authors to adjust the parameters in order to obtain good
results. As a consequence, however, the tests were performed on di�erent com-
puter architectures and operating systems. Therefore, we could not impose a

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

bound on the computation time to provide a basis for the comparison. Instead,
we have chosen to limit the number of generated and evaluated schedules to
1000 and 5000, respectively. This decision is based on the assumption that
the e�ort needed for generating one schedule is similar in the tested heuristics.
With the exception of the schedule scheme representation based TS approach
of Baar et al. (1997) all algorithms considered for our investigation make use of
an SGS as described in Section 7.2. Hence, we found this assumption justi�ed.

7.6.2 Results

Tables 7:7{7:11 display the results of the computational comparison. The
heuristics are sorted according to descending performance with respect to 5000
iterations. Table 7:7 summarizes the percentage deviations from the optimal
makespan for the instance set j30. As for the other two instance sets some of
the optimal solutions are not known, we measured for these sets the average
percentage deviation from an upper and a lower bound, respectively. The up-
per bound was set to the lowest makespan found by any of the tested heuristics
while the lower bound was selected to be the critical path based lower bound
(cf. Stinson et al. 1978). We employed the lower bound in order to allow
researchers to compare their results with the ones obtained in this study. All
lower and upper bounds can be obtained from the authors upon request. For
the j60 set, the percentage deviations from the upper and lower bounds are
reported in Tables 7:8 and 7:10, respectively. Note, that the schedule scheme
based TS heuristic of Baar et al. (1997) was additionally run by allowing 2 tri-
als where each trial was terminated after no improved solution was found after
250 iterations. This way, the deviation from the upper bound was lowered to
1.14 %. Finally, Tables 7:9 and 7:11 provide the respective deviations for the
j120 set.

The heuristics that performed best in our study are the SA of Bouleimen
and Lecocq (1998) and the GA of Hartmann (1997a). While the procedure of
Bouleimen and Lecocq performs best on the j30 set, the approach of Hartmann
dominates on the instance sets with larger projects.

Generally, the results show that the best metaheuristic strategies outperform
the best priority rule based sampling approaches. Increasing the number of
schedules allowed to be computed further increases the superiority of the meta-
heuristics. This is mainly because sampling procedures generate each schedule
anew without considering any information given by already visited solutions
while metaheuristic algorithms typically exploit the knowledge gained from the
previously evaluated schedule(s).

A comparison of the results obtained from the metaheuristics shows that
the choice of the underlying representation is crucial. The two best procedures

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

Iterations
Algorithm SGS Reference 1000 5000

SA { activity list s Bouleimen, Lecocq (1998) 0.38 0.23
GA { activity list s Hartmann (1997a) 0.54 0.25
TS { sched. scheme related Baar et al. (1997) 0.86 0.44
sampling { adaptive s/p Kolisch, Drexl (1996) 0.74 0.52
sampling { LFT s Kolisch (1996a) 0.83 0.53
sampling { adaptive s/p Schirmer, Riesenberg (1998) 0.71 0.59
sampling { WCS p Kolisch (1996b) 1.40 1.28
sampling { LFT p Kolisch (1996a) 1.40 1.29
GA { random key mod. p Leon, Ramamoorthy (1995) 2.08 1.59

Table 7:7 Average deviations from optimal solution | J = 30

Iterations
Algorithm SGS Reference 1000 5000

GA { activity list s Hartmann (1997a) 0.99 0.45
SA { activity list s Bouleimen, Lecocq (1998) 1.17 0.49
sampling { adaptive s/p Schirmer, Riesenberg (1998) 1.26 0.97
sampling { adaptive s/p Kolisch, Drexl (1996) 1.60 1.26
TS { sched. scheme related Baar et al. (1997) 1.79 1.54
sampling { LFT s Kolisch (1996a) 1.88 1.55
sampling { LFT p Kolisch (1996a) 1.83 1.56
sampling { WCS p Kolisch (1996b) 1.88 1.56
GA { random key mod. p Leon, Ramamoorthy (1995) 2.48 1.82

Table 7:8 Average deviations from best solution | J = 60

make use of di�erent metaheuristic paradigms while they both employ the
activity list representation. The use of one metaheuristic paradigm itself does
not necessarily lead to consistently good solutions. This can be seen by the
results of the two GA's of Hartmann (1997a) and Leon and Ramamoorthy
(1995). The activity list based GA excells the problem space based GA.

Analyzing the priority rule based sampling procedures, we observe a strong
in
uence of the SGS when used together with the LFT rule. While the serial

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

Iterations
Algorithm SGS Reference 1000 5000

GA { activity list s Hartmann (1997a) 2.59 0.89
SA { activity list s Bouleimen, Lecocq (1998) 5.73 1.86
sampling { LFT p Kolisch (1996a) 2.92 2.32
sampling { WCS p Kolisch (1996b) 2.94 2.34
sampling { adaptive s/p Schirmer, Riesenberg (1998) 3.28 2.55
sampling { adaptive s/p Kolisch, Drexl (1996) 3.95 3.33
GA { random key mod. p Leon, Ramamoorthy (1995) 5.33 3.76
sampling { LFT s Kolisch (1996a) 4.78 4.10

Table 7:9 Average deviations from best solution | J = 120

Iterations
Algorithm SGS Reference 1000 5000

GA { activity list s Hartmann (1997a) 12.68 11.89
SA { activity list s Bouleimen, Lecocq (1998) 12.75 11.90
sampling { adaptive s/p Schirmer, Riesenberg (1998) 13.02 12.62
sampling { adaptive s/p Kolisch, Drexl (1996) 13.51 13.06
sampling { WCS p Kolisch (1996b) 13.66 13.21
sampling { LFT p Kolisch (1996a) 13.59 13.23
TS { sched. scheme related Baar et al. (1997) 13.80 13.48
GA { random key mod. p Leon, Ramamoorthy (1995) 14.33 13.49
sampling { LFT s Kolisch (1996a) 13.96 13.53

Table 7:10 Average deviations from critical path based lower bound | J = 60

SGS leads to better results on the j30 instance set, the parallel one is supe-
rior on the j60 and j120 instance sets, respectively. The two rules WCS and
LFT give almost identical results when employed within the parallel SGS. The
adaptive sampling strategies do not consistently dominate the simple sampling
procedures. Compared to each other, we observe that the adaptive sampling
approach of Schirmer and Riesenberg (1998) outperforms the one of Kolisch
and Drexl (1996) on the j60 and j120 instance sets while the latter yields bet-
ter results on the j30 set.

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

Iterations
Algorithm SGS Reference 1000 5000

GA { activity list s Hartmann (1997a) 39.37 36.74
SA { activity list s Bouleimen, Lecocq (1998) 42.81 37.68
sampling { LFT p Kolisch (1996a) 39.60 38.75
sampling { WCS p Kolisch (1996b) 39.65 38.77
sampling { adaptive s/p Schirmer, Riesenberg (1998) 40.08 39.08
sampling { adaptive s/p Kolisch, Drexl (1996) 41.37 40.45
GA { random key mod. p Leon, Ramamoorthy (1995) 42.91 40.69
sampling { LFT s Kolisch (1996a) 42.84 41.84

Table 7:11 Average deviations from critical path based lower bound | J = 120

We �nally remark that the metaheuristic algorithms which make use of the
activity list representation can be assumed to be the fastest approaches. This is
due to the fact that the underlying serial SGS for activity lists (cf. Section 7.2)
does not compute the eligible set or select an activity on the basis of priority
values.

7.7 OUTLOOK ON RESEARCH OPPORTUNITIES

Our computational results indicate that the best heuristics currently available
are metaheuristic strategies which make use of activity lists. Further investi-
gations (cf. Hartmann and Kolisch (1998) are headed towards a deeper insight
of the functioning of di�erent heuristics subject to di�erent problem character-
istics as given in Kolisch et al. (1995) and Kolisch and Sprecher (1996).

Although priority rule based methods do not give the best results, they
are important for several reasons. First, they are indispensable when solving
large problem instances in a short amount of time. Second, good priority rule
based methods are needed to determine the initial solution(s) for metaheuristic
procedures. Hence, further e�orts in this area are still justi�ed.

Summarizing, recent years have brought a considerable progress in designing
more e�cient heuristics for the RCPSP, and we believe that this will remain a
fruitful �eld of research in the future. In addition to the development of even
better heuristics, extending the current approaches to more general project
scheduling problems are of special interest.
Acknowledgement. We are indebted to Tonius Baar, Peter Brucker, and

Sigrid Knust (University of Osnabr�uck), Kamel Bouleimen and Henri Lecocq

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

(University of Li�ege), Jorge Leon and Balakrishnan Ramamoorthy (Texas A&M
University) as well as Andreas Schirmer and Sven Riesenberg (University of
Kiel) for their help in this research. This research has been supported by
the Deutsche Forschungsgemeinschaft and the Studienstiftung des deutschen
Volkes.

References

Alvarez-Vald�es, R., and Tamarit, J. Heuristic algorithms for resource{
constrained project scheduling: A review and an empirical analysis. In Ad-
vances in project scheduling, R. S lowi�nski and J. W�eglarz, Eds. Elsevier,
Amsterdam, 1989a, pp. 113{134.

Alvarez-Vald�es, R., and Tamarit, J. Algoritmos heur�isticos deterministas
y aleatorios en secuenciac�on de proyectos con recursos limitados. Q�uestii�o
13 (1989b), 173{191.

Baar, T., Brucker, P., and Knust, S. Tabu{search algorithms for the
resource{constrained project scheduling problem. Tech. rep., Osnabr�ucker
Schriften zur Mathematik, Fachbereich Mathematik/Informatik, Osnabr�uck,
1997.

Bean, J. Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal on Computing 6, 2 (1994), 154{160.

Bell, C., and Han, J. A new heuristic solution method in resource{constrained
project scheduling. Naval Research Logistics 38 (1991), 315{331.

Bixby, N., and Boyed, E. Using the CPLEX callable library. CPLEX Opti-
mization Inc., Houston, 1996.

B la_zewicz, J., Lenstra, J., and Rinnooy Kan, A. Scheduling subject to
resource constraints: Classi�cation and complexity. Discrete Applied Math-
ematics 5 (1983), 11{24.

Boctor, F. Some e�cient multi{heuristic procedures for resource{constrained
project scheduling. European Journal of Operational Research 49 (1990), 3{
13.

Bouleimen, K., and Lecocq, H. A new e�cient simulated annealing algo-
rithm for the resource{constrained project scheduling problem. Tech. rep.,
Service de Robotique et Automatisation, Universit�e de Li�ege, 1998.

Brucker, P., and Knust, S. Solving large{sized resource{constrained project
scheduling problems. In Handbook on recent advances in project scheduling,
J. Weglarz, Ed. Kluwer, Amsterdam, 1998, Chapter 2.

Brucker, P., Knust, S., Schoo, A., and Thiele, O. A branch & bound
algorithm for the resource{constrained project scheduling problem. European
Journal of Operational Research (1998).

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

Cho, J.-H., and Kim, Y.-D. A simulated annealing algorithm for resource
constrained project scheduling problems. Journal of the Operational Re-
search Society 48 (1997), 735{744.

Christofides, N., Alvarez-Vald�es, R., and Tamarit, J. Project schedul-
ing with resource constraints: A branch and bound approach. European Jour-
nal of Operational Research 29 (1987), 262{273.

Cooper, D. Heuristics for scheduling resource{constrained projects: An ex-
perimental investigation. Management Science 22, 11 (1976), 1186{1194.

Cooper, D. A note on serial and parallel heuristics for resource{constrained
project scheduling. Foundations of Control Engineering 2, 4 (1977), 131{133.

Davies, E. An experimental investigation of resource allocation in mulitactiv-
ity projects. Operational Research Quarterly 24 (1973), 587{591.

Davis, E., and Patterson, J. A comparison of heuristic and optimum so-
lutions in resource{constrained project scheduling. Management Science 21
(1975), 944{955.

Della Croce, F. Generalized pairwise interchanges and machine scheduling.
European Journal of Operational Research 83 (1995), 310{319.

Demeulemeester, E., and Herroelen, W. New benchmark results for the
resource{constrained project scheduling problem. Management Science 43,
11 (1997), 1485{1492.

Dorndorf, U., and Pesch, E. Evolution based learning in a job shop schedul-
ing environment. Computers & Operations Research 22, 1 (1995), 25{40.

Drexl, A. Scheduling of project networks by job assignment. Management
Science 37, 12 (1991), 1590{1602.

Elmaghraby, S. Activity networks: Project planning and control by network
models. Wiley, New York, 1977.

Elsayed, E. Algorithms for project scheduling with resource constraints. In-
ternational Journal of Production Research 20, 1 (1982), 95{103.

Glover, F. Tabu search { Part I. ORSA Journal on Computing 1 (1989a),
190{206.

Glover, F. Tabu search { Part II. ORSA Journal on Computing 2 (1989b),
4{32.

Hartmann, S. A competitive genetic algorithm for resource{constrained project
scheduling. Tech. Rep. 451, Manuskripte aus den Instituten f�ur Betrieb-
swirtschaftslehre der Universit�at Kiel, 1997a.

Hartmann, S. Project scheduling with multiple modes: A genetic algorithm.
Tech. Rep. 435, Manuskripte aus den Instituten f�ur Betriebswirtschaftslehre
der Universit�at Kiel, 1997b.

Hartmann, S., and Kolisch, R. An experimental investigation of state{of{
the{art heuristics for the resource{constrained project scheduling problem.
Tech. rep., University of Kiel, 1998. in preparation.

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

Herroelen, W., Demeulemeester, E., and De Reyck, B. A classi�cation
scheme for project scheduling. In Handbook on recent advances in project
scheduling, J. Weglarz, Ed. Kluwer, 1998, Chapter 1.

Holland, H. Adaptation in natural and arti�cial systems. University of Michi-
gan Press, Ann Arbor, 1975.

Kelley, J. The critical{path method: Resources planning and scheduling. In
Industrial scheduling, J. Muth and G. Thompson, Eds. Prentice{Hall, New
Jersey, 1963, pp. 347{365.

Kim, Y.-D. A backward approach in list scheduling algorithms for multi{
machine tardiness problems. Computers & Operations Research 22, 3 (1995),
307{319.

Kirkpatrick, S., Gelatt jr., C. D., and Vecchi, M. P. Optimization by
simulated annealing. Science 220 (1983), 671{680.

Kohlmorgen, U., Schmeck, H., and Haase, K. Experiences with �ne{
grained parallel genetic algorithms. Annals of Operations Research (1998).

Kolisch, R. Project scheduling under resource constraints | E�cient heuris-
tics for several problem classes. Physica, Heidelberg, 1995.

Kolisch, R. Serial and parallel resource{constrained project scheduling meth-
ods revisited: Theory and computation. European Journal of Operational
Research 90 (1996a), 320{333.

Kolisch, R. E�cient priority rules for the resource{constrained project schedul-
ing problem. Journal of Operations Management 14, 3 (1996b), 179{192.

Kolisch, R., and Drexl, A. Adaptive search for solving hard project schedul-
ing problems. Naval Research Logistics 43 (1996), 23{40.

Kolisch, R., and Padman, R. An integrated survey of project scheduling.
Tech. Rep. 463, Manuskripte aus den Instituten f�ur Betriebswirtschaftslehre
der Universit�at Kiel, 1997.

Kolisch, R., Schwindt, C., and Sprecher, A. Benchmark instances for
project scheduling problems. In Handbook on recent advances in project
scheduling, J. Weglarz, Ed. Kluwer, Amsterdam, 1998, Chapter 9.

Kolisch, R., and Sprecher, A. PSPLIB | a project scheduling problem
library. European Journal of Operational Research 96 (1996), 205{216.

Kolisch, R., Sprecher, A., and Drexl, A. Characterization and genera-
tion of a general class of resource{constrained project scheduling problems.
Management Science 41, 10 (1995), 1693{1703.

Lawrence, S. Resource constrained project scheduling { A computational
comparison of heuristic scheduling techniques. Tech. rep., Graduate School
of Industrial Administration, Carnegie{Mellon University, Pittsburgh, 1985.

Lee, J.-K., and Kim, Y.-D. Search heuristics for resource constrained project
scheduling. Journal of the Operational Research Society 47 (1996), 678{689.

HANDBOOK ON RECENT ADVANCES IN PROJECT SCHEDULING

Leon, V., and Ramamoorthy, B. Strength and adaptability of problem{
space based neighborhoods for resource{constrained scheduling. OR Spek-
trum 17, 2/3 (1995), 173{182.

Li, R.-Y., and Willis, J. An iterative scheduling technique for resource{
constrained project scheduling. European Journal of Operational Research
56 (1992), 370{379.

Mausser, H., and Lawrence, S. Exploiting block structure to improve
resource{constrained project schedules. Tech. rep., University of Colorado,
Graduate School of Business Administration, 1995.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., and Bianco, L. An exact
algorithm for project scheduling with resource constraints based on a new
mathematical formulation. Management Science ?? (1998), ??{?? to appear.

Naphade, K., Wu, S., and Storer, R. Problem space search algorithms
for resource{constrained project scheduling. Annals of Operations Research
70 (1997), 307{326.

O~guz, O., and Bala, H. A comparative study of computational procedures
for the resource constrained project scheduling problem. European Journal
of Operational Research 72 (1994), 406{416.

�Ozdamar, L., and Ulusoy, G. A local constraint based analysis approach
to project scheduling under general resource constraints. European Journal
of Operational Research 79 (1994), 287{298.

�Ozdamar, L., and Ulusoy, G. A note on an iterative forward/backward
scheduling technique with reference to a procedure by Li and Willis. Euro-
pean Journal of Operational Research 89 (1996a), 400{407.

�Ozdamar, L., and Ulusoy, G. An iterative local constraint based analysis
for solving the resource constrained project scheduling problem. Journal of
Operations Management 14, 3 (1996b), 193{208.

Patterson, J. Alternate methods of project scheduing with limited resources.
Naval Research Logistics Quarterly 23 (1973), 767{784.

Patterson, J. Project scheduling: The e�ects of problem structure on heuris-
tic performance. Naval Research Logistics Quarterly 20 (1976), 95{123.

Pinson, E., Prins, C., and Rullier, F. Using tabu search for solving the
resource{constrained project scheduling problem. In Proceedings of the 4.
International Workshop on Project Management and Scheduling (Leuven,
1994), pp. 102{106.

Pollack{Johnson, B. Hybrid structures and improving forecasting and schedul-
ing in project management. Journal of Operations Management 12 (1995),
101{117.

Pritsker, A., Watters, L., and Wolfe, P. Multiproject scheduling with
limited resources: A zero{one programming approach. Management Science
16 (1969), 93{107.

HEURISTIC ALGORITHMS FOR SOLVING THE RCPSP

Sampson, S., and Weiss, E. Local search techniques for the generalized re-
source constrained project scheduling problem. Naval Research Logistics 40
(1993), 665{675.

Schirmer, A., and Riesenberg, S. Parameterized heuristics for project
scheduling | Biased random sampling methods. Tech. Rep. 456, Manuskripte
aus den Instituten f�ur Betriebswirtschaftslehre der Universit�at Kiel, 1997.

Schirmer, A., and Riesenberg, S. Case{based control schemes for parame-
terized project scheduling heuristics. Tech. rep., University of Kiel, 1998. in
preparation.

Schutten, J. List scheduling revisited. Operations Research Letters 18 (1996),
167{170.

Shaffer, L., Ritter, J., and Meyer, W. The critical{path method. Mc-
Graw Hill, New York, 1965.

Sprecher, A. Solving the RCPSP e�ciently at modest memory requirements.
Tech. Rep. 425, Manuskripte aus den Instituten f�ur Betriebswirtschaftslehre
der Universit�at Kiel, 1996.

Sprecher, A., Kolisch, R., and Drexl, A. Semi{active, active, and non{
delay schedules for the resource{constrained project scheduling problem. Eu-
ropean Journal of Operational Research 80 (1995), 94{102.

Stinson, J., Davis, E., and Khumawala, B. Multiple resource{constrained
scheduling using branch and bound. AIIE Transactions 10 (1978), 252{259.

Storer, R., Wu, S., and Vaccari, R. New search spaces for sequencing
problems with application to job shop scheduling. Management Science 38,
10 (1992), 1495{1509.

Thesen, A. Heuristic scheduling of activities under resource and precedence
restrictions. Management Science 23, 4 (1976), 412{422.

Thomas, P., and Salhi, S. An investigation into the relationship of heuristic
performance with network{resource characteristics. Journal of the Opera-
tional Research Society 48, 1 (1997), 34{43.

Ulusoy, G., and �Ozdamar, L. Heuristic performance and network/resource
characteristics in resource{constrained project scheduling. Journal of the Op-
erational Research Society 40, 12 (1989), 1145{1152.

Ulusoy, G., and �Ozdamar, L. A constraint{based perspective in resource
constrained project scheduling. International Journal of Production Research
32, 3 (1994), 693{705.

Valls, V., P�erez, M., and Quintanilla, M. Heuristic performance in large
resource{constrained projects. Tech. Rep. 92{2, Departament D'Estadistica
I Invecigacio Operativa, Universitat de Valencia, 1992.

Whitehouse, G., and Brown, J. GENRES: An extension of Brooks algo-
rithm for project scheduling with resource constraints. Computers & Indus-
trial Engineering 3 (1979), 261{268.

