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Abstract: The paper describes an algorithm for the generation of a general class of

precedence- and resource-constrained scheduling problems. Easy and hard instances for

the single- and multi-mode resource-constrained project scheduling problem are bench-

marked by using the state of the art (branch-and-bound-) procedures. The strong im-

pact of the chosen parametric characterization of the problems is shown via an in-depth

computational study. The results provided, demonstrate that the classical benchmark

instances used by several researchers over decades belong to the subset of the very easy

ones. In addition it is shown that hard instances, being far more smaller in size than

presumed in the literature, may not be solved to optimality even within a huge amount

of computational time.

Keywords: Project scheduling, precedence- and resource-constraints, nonpreemptive case, single-

mode, multiple-modes, project generator, branch-and-bound methods, easy and hard instances.

1 Introduction

From the beginning of resource-constrained project scheduling research, rapid progress regarding

models and methods has been documented in the literature (cf. [2], [3], [8], [12], [16], [17], [25], [41],

[43], [55], [57], and [58]). But at the same time very little research concerned with the systematic

generation of benchmark instances has been published. In [23] only a generator for random project

scheduling problems is given. Unfortunately it does not allow to create instances subject to certain

project characteristics. Hence for experimental purposes many researchers have generated their

own test problems; sometimes utilizing a very restricted subset of project characteristics. Some of

this work is rather well documented (cf. [12], [25], [29], [31], [44]; [48], [54]), while most e�orts are

only briey described (cf. [1], [6], [7], [9], [11], [13], [14], [19], [20], [30], [32], [33], [36], [37], [42],

[46], [50], [56], [59], [61], and [64]). As a result, only a few commonly used benchmark instances

are available. In 1984 Patterson compared four exact procedures for makespan minimization of the

single-mode resource-constrained project scheduling problems (cf. [38]). These 110 problems have

been (partly) used by [4], [5], [12], [15], [17] [28], [37], [39], [40], [46], [47] and [58] and therefore

became a quasi standard. Nevertheless there are three main drawbacks:

� As a collection of problems from di�erent sources, the problems are not generated by using

a controlled design of speci�ed parameters.

� Only the single-mode case and makespan minimization is taken into consideration.

� Recent advances (cf. [17]) in the development of exact single-mode procedures have demon-

strated that the Patterson-set is solvable within an average CPU-time of less than a second
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on a personal computer. Since there are instances (with the same number of activities) which

are much more di�cult to solve, they cannot be considered as a benchmark anymore.

Therefore the intention of the paper is twofold (cf. [24]): First we present an instance generator

for a broad class of project scheduling problems which utilizes several parameters. Some of them

have been proposed in the former literature, others are entirely new. Second we present sets of

instances for the single- and the multi-mode case of the resource-constrained project scheduling

problem. Solving these problems with the state of the art procedures, the strong impact of the

parameters speci�ed is demonstrated. Both the project generator PROGEN and the 1216 instances

are available from the authors upon request.

The remainder of the paper is organized as follows: In section 2 we give a formal description of

the model. The employed parameters and their realization within the project generator is dealt

with in sections 3 and 4. The e�ect of the parameters used in the computational study of the

single- and multi-mode case, respectively, is outlined in section 5. Some conclusions can be found

in section 6. Finally a functional description of the generator is given in the appendix.

2 Notation and Model Description

We consider P projects, where each project has a speci�c release date �p as well as a due date

�p. The overall (super-)project consists of J partially ordered jobs, where j=1 (j=J) is the unique

dummy source (sink). For the sake of simplicity project refers to the overall (super-) project as

well. Pj (Sj) is the set of immediate predecessors (successors) of job j. The jobs are numerically

labeled, i.e. a predecessor of j has a smaller job number than j. The precedence relations between

the jobs can be represented by an acyclic activity-on-node network (AON). Furthermore the jobs

within the projects are consecutively labeled with FJp (LJp) being the �rst (last) job of project

p. Thus project p consists of LJp � FJp + 1 jobs.

Following the categorization scheme proposed by Slowinski (cf. [51], [52]) and Weglarz (cf. [62],

[63]) we distinguish three types of (scarce) resources: the set R of renewable resources, the set N

of nonrenewable resources and �nally the set D of doubly constrained resources. Each resource

r 2 R has a constant period capacity of K�
r and each resource r 2 N has an overall capacity of

K�
r units. Doubly constrained resources r 2 D are limited with respect to period capacity K�

r

and total capacity K�
r . Each job j can be processed in one of Mj modes. Job j performed in

mode m has a non splittable duration of djm periods. It uses k�jmr units of the renewable (doubly

constrained) resource r each period it is in process and consumes k�jmr units of the nonrenewable

(doubly constrained) resource r. Table 1 provides a summary of the notations and de�nitions.

For modelling purposes we use binary variables as proposed in [43] for j = 1; : : : ; J , m = 1; : : : ;Mj,
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p = 1; : : : ; P : projects

�p(�p) : release date (due date) of project p

cp : cost incurring per period project p is �nished after its due date

FJp(LJp) : number of the �rst (last) job of project p

j = 1(J) : unique source (sink) of the network

Pj(Sj) : set of immediate predecessors (successors) of job j

EFj(LFj) : earliest (latest) �nish time of job j

�T : upper bound on the projects makespan (horizon)

r 2 R (N;D) : set of renewable (nonrenewable, doubly constrained) resources

m = 1; :::;Mj : modes of job j

djm : (non preemptable) duration of job j scheduled in mode m

k�jmr : per period usage of renewable (doubly constrained) resource r re-

quired to perform job j in mode m

k�jmr : total consumption of nonrenewable (doubly constrained) resource

r required to perform job j in mode m

K�
r : per period availability of renewable (doubly constrained) re-

source r

K�
r : total availability of nonrenewable (doubly constrained) resource r

Table 1: Symbols and De�nitions

t = EFj ; : : : ; LFj:

xjmt =

8<
:

1 ; if job j is performed in mode m and completed in period t

0 ; otherwise.

The constraints are given in Table 2. (1) ensures that each job is assigned exactly one mode and

a completion time within its time window [EFj; LFj]. The time window of feasible �nish times is

calculated by forward and backward recursion as shown in [19]. (2) indicates that no job starts

before the release date of its project while (3) warrants that no job ends after the due date of its

project. Precedence relations between related jobs are maintained by (4). (5) secures feasibility

with respect to renewable and doubly constrained resources. Finally (6) limits the consumption of

the nonrenewable and doubly constrained resources to their availability.

The most common objective function w.r.t. (1)-(7) is the makespan minimization

minimize
MJX
m=1

LFJX
t=EFJ

t xJmt:
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MjP
m=1

LFjP
t=EFj

xjmt = 1 j = 1; : : : ; J (1)

MjP
m=1

LFjP
t=EFj

(t� djm) xjmt � �p p = 1; : : : ; P , j = FJp; : : : ; LJp (2)

MjP
m=1

LFjP
t=EFj

t xjmt � �p p = 1; : : : ; P , j = FJp; : : : ; LJp (3)

MhP
m=1

LFhP
t=EFh

t xhmt �
MjP
m=1

LFjP
t=EFj

(t� djm) xjmt j = 1; : : : ; J , h 2 Pj (4)

JP
j=1

MjP
m=1

k�jmr

t+djm�1P
q=t

xjmq � ��rt r 2 R [D, t = 1; : : : ; �T (5)

JP
j=1

MjP
m=1

k�jmr

LFjP
t=EFj

xjmt � ��r r 2 N [D (6)

xjmt 2 f0; 1g j = 1; : : : ; J , m = 1; : : : ;Mj, (7)

t = EFj; : : : ; LFj

Table 2: Constraints

Another objective is, e.g. the minimization of the weighted project delay

minimize
PX
p=1

cp

0
@ LJp

max
j=FJp

8<
:

MjX
m=1

LFjX
t=EFj

t xjmt

9=
;� �p

1
A
+

;

where

z+ :=

8<
:

z ; if z � 0

0 ; otherwise.

This formulation embodies a wide range of precedence- and resource-constrained scheduling prob-

lems, especially the single- (P = 1, Mj = 1, j = 1; : : : ; J , N = D = ;, �p = 0, �p = �T ) and the

multi-mode problem (P = 1, �p = 0, �p = �T ) of resource-constrained project scheduling. Further-

more job shop and ow shop type problems as well as scheduling problems with one and multiple

parallel machines are included. Note that the main emphasis of the paper is on the generation of

the set of solutions, i.e. the constraints (1)-(7). In addition it is easy to incorporate other (regular)

objective functions. Details are left to the reader (and user of PROGEN).
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3 Project Generation

3.1 Basedata Generation

In this section we briey outline the generation of the projects basedata. We use the functions

round and trunc as well as the random functions rand and rand de�ned as follows:

rand[n1; n2] : integer random number out of the interval [n1; n2]

rand[n1; n2] : real random number out of the interval [n1; n2]:

The (pseudo) random numbers are constructed by transforming [0; 1) uniformly distributed random

numbers. The [0; 1) uniformly distributed random numbers are calculated via the congruence-

generator developed by Lehmer using the constants and implementation as given in [49]. The

generation of the basedata needs no further explanation. The input and output is displayed in

Tables 3 and 4, respectively. MPMp denotes the MPM-duration of project p, p = 1; : : : ; P . It

is calculated with respect to the release dates by using the modes of shortest duration and the

network, the construction of which is described in the next section.

P : number of projects

Jmin(Jmax) : minimal (maximal) number of jobs per project

Mmin(Mmax) : minimal (maximal) number of modes per job

dmin(dmax) : minimal (maximal) duration per job

�max : maximal release date

�fac : due date factor 2 [0; 1]

Table 3: Input Basedata Generation

3.2 Network Generation

In section 2 we stated that the structure of the project can be depicted as an acyclic AON. Thus

it is a quite natural approach to construct the network by using the following simple implication

of the de�nition of a network:

Theorem 1 (cf. [35], p.33)

Let N = (V;A) be a network with node set V and arc set A. Then, for every node v 2 V there is

a directed path from the single source to v and a directed path from v to the single sink.

That is, every node except of the sink (source) has at least one successor (predecessor). Therefore

the basic idea is as follows: First, determine one predecessor for each node, second, determine one

successor for each node and then add further arcs.

5



Jp := rand[Jmin; Jmax], p = 1; : : : ; P

= number of jobs of project p

J :=
PP
p=1

Jp + 2

= total number of jobs (including super-source and -sink). The jobs are numeri-

cally and consecutively labeled within the projects. That is, project p consists

of the numerically labeled jobs j, j =
p�1P
q=1

Jq + 2; : : : ;
pP

q=1

Jq + 1.

Mj := rand[Mmin;Mmax], j = 2; : : : ; J � 1; (M1 = MJ = 1)

= number of modes of job j

djm := rand[dmin; dmax], j = 2; : : : ; J � 1, m = 1; : : : ;Mj (d11 = dJ1 = 0). The modes

are labeled with respect to non-decreasing durations.

�p := rand[0; �max]

= release date of project p

�T :=
P

max
p=1

�p +
JP
j=1

Mj

max
m=1

fdjmg

= horizon

�p := trunc(MPMp + �fac( �T �MPMp))

= due date of project p

cp := trunc(rand[0; 1] � Jp)

= per period tardiness costs of project p

Table 4: Output Basedata Generation

Figure 1: Example Network

We consider the example in Figure 1 (cf. [21], p. 179), where the additional arc (2; 7) would

give no extra information about scheduling the activities and therefore should not be taken into

consideration. We use the following de�nition:
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De�nition 1

Let N = (V;A) be a network. An arc (h; j) is called redundant, if there are arcs (i0; i1); : : : ; (is�1; is) 2

A with i0 = h, is = j and s � 2.

That is, an arc (i; j) is redundant, if it is an element of the transitive closure �N+ of �N =

(V;Anf(i; j)g). If within the construction process of the network an arc (i; j) is chosen for adding

it to the actual graph, four cases of redundancy might occur (cf. Figure 2, where �N = (V;A)

denotes the current graph with actual sets of (immediate) successors �Sj(Sj) and (immediate) pre-

decessors �Pj(Pj)). For a given cardinality of the set of nodes the mimimal and maximal number

Figure 2: Cases of Redundancy
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of non-redundant arcs are given in the following theorem and illustrated in Figures 3 and 4.

Theorem 2

Let N = (V;A) be a network with jV j = n.

(a) Since a network is connected, the minimal number of non-redundant arcs Amin is given by

Amin = n� 1:

(b) The maximal number of non-redundant arcs Amax in a network with n � 6 is given by

Amax =

8<
:

n� 2 +
�
n� 2
2

�2
: if n is even

n� 2 +
�
n� 1
2

��
n� 3
2

�
: if n is odd.

Figure 3: Minimal Number of Non-

redundant Arcs

Figure 4: Maximal Number of Non-redundant Arcs

Smin
1 (Smax

1 ) : minmimal (maximal) number of start activities

Pmin
J (Pmax

J ) : minmimal (maximal) number of �nish activities

Smax
j (Pmax

j ) : maximal number of successor (predecessor) activities of activ-

ity j, j = 2; : : : ; J � 2

C : network complexity, i.e. the average number of non-redundant

arcs per node (including the super-source and -sink)

�NET : tolerated complexity deviation

Table 5: Input Network Generation

For the characterization of the network we use the parameters given in Table 5. The complexity as

the average number of (non-redundant) arcs per node is a measure for the network logic, which has
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been introduced by Pascoe (cf. [36]) for activity-on-arc networks and adopted by Davis (cf. [13])

for the AON representation. For the latter complexity has to be understood in the way that for a

�xed number of jobs a higher complexity results in an increasing number of arcs and therefore in a

greater interconnectedness of the network. It has already been shown by Alvarez-Valdes/Tamarit

(cf. [1]) and will be con�rmed in this study that with increasing complexity problems become

easier. This makes the term complexity somewhat confounding. Nevertheless we stay with the

term, because it has been used in a lot of computational studies (cf. [54], [37], [57], [31] and [20])

and has become a well known project summary measure. Two disadvantages associated with this

measure have to be mentionend - to wit:

(i) The number of arcs only does not give all informations about the number of possible schedules.

Attempts in order to �nd more elaborate measures than complexity can be found in [26], [60] and

[22]. But as pointed out by Elmaghraby and Herroelen (cf. [22]) "it seems evident to us that the

structure of the network - in whichever way it is measured - will not be su�cient to reect the

di�culty encountered in the resolution of such problems".

(ii) The measure is not normalized to the interval [0,1]. A normalized measure for the network

structure is the "Order Strength" which has been proposed by Mastor (cf. [34]) for the assembly

line balancing problem and used by Cooper (cf. [10]) for the project scheduling problem. The Or-

der Strength for AON-representation is calculated by dividing the number of arcs by the maximal

number of arcs which is n(n-1)/2. Unfortunately the maximal number of arcs has two drawbacks:

It includes redundant arcs and is far greater then a realistic number of precedence relations within

scheduling problems. Although we can use the maximal number of non-redundant arcs for normal-

izational purpose, they still exceed the number of realistic precedence relations. As a consequence

for realistic projects the order strength converges to zero with an increasing number of jobs.

We now describe the network construction for a single project (Figure 5), a multi-project network

is maintained analogously. In Step 1 the number of start- and �nish-activities are drawn randomly

out of the interval [Smin
1 ; Smax

1 ] and [Pmin
J ; Pmax

J ], respectively. Then, the arcs, which connect the

dummy source with the start activities and the �nish-activities with the dummy sink are added

to the network. In Step 2, beginning with the lowest indexed non-start activity, each activity is

assigned a predecessor (activity) at random. Similar in Step 3, where each activity, which has no

successor, is assigned one, cf. arcs (3,6) and (6,9) in Figure 5. In both steps the jobs are considered

in order of increasing job number. Finally (in Step 4) further arcs are added until the complexity

is reached. During the whole procedure one has to take into account:

� To avoid redundancy, there must be no precedence relations between the start-activities and

the �nish-activities, respectively.

� Adding arcs in Step 3 (e.g. arc (6,8)) or 4 must not produce redundant precedence relations.
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Figure 5: Network Generation
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� The limitation given by the maximal number of successors and predecessors and the number

of start and �nish activities (e.g. arc (4,6) in Step 4, which cannot be incorporated, if at

most two predecessors are allowed).

In the following cases the generation procedure has to be restarted:

� If the required complexity is low, i.e. C � 1, it might happen that after Step 3 the number

of arcs integrated into the network is too high, that is,

ActArcs > J �C � (1 + �NET ):

� If in Step 3, due to the limited number of predecessors, there is no successor of a job j

available.

� If in Step 3 for a job j, there are only successors available, which lead to redundant precedence

relations.

� If the required complexity is not obtainable in Step 4, that is, within a limited number of

trials of randomly selecting a node and calculating possible successors, there are no further

arcs addable to obtain

ActArcs � J �C � (1� �NET ):

By an appropriate reduction of the set of choosable predecessors and successors in the steps pre-

viously described a numerical labeled network is realized.

Through adjustment of the input parameters special network structures, e.g. general (Figure 6),

serial structures (Figure 7) and network shapes as described in [30], [31] and [53] are obtainable.

Figure 6: Multi-Project with General Structure
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Figure 7: Multi-Project with Serial Structure

j� jmin(j� jmax) : minimal (maximal) number of resources of type �

Qmin
� (Qmax

� ) : minimal (maximal) number of resources of type � used

by a job-mode combination [j;m]

Umin
� (Umax

� ) : minimal (maximal) demand for a resource of type �

P� (F = 1)(P� (F = 2)) : probability that demand for a resource of type � is du-

ration constant (monotonically decreasing with the du-

ration)

RF� : resource factor of type �

RS� : resource strength of type �

�RF : tolerated resource factor deviation

Table 6: Input Demand Generation

4 Resource Demand and Availability Generation

4.1 Resource Demand Generation

The resource demand generation consists of two decisions to be made. First, we have to determine

the resources used or consumed by the job-mode combinations [j,m], j = 1; : : : ; J , m = 1; : : : ;Mj.

Second, if a job-mode combination uses or consumes a resource, we have to calculate the number

of units used or consumed. To the �rst step we refer with request generation (Subsection 4.1.1)

and to the latter we refer with generation of demand level (Subsection 4.1.2).

We consider a resource type � 2 fR;N;Dg. The number of resources of type � is determined by

a randomly drawn integer within [j� jmin; j� jmax], that is

j� j := rand[j� jmin; j� jmax]:

4.1.1 Requested Resources

For characterizational purposes we use a generalization of the resource factor (RF) which has been

introduced by Pascoe (cf. [36]) for the single-mode case and which has later on been utilized in
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studies by Cooper (cf. [10]) and Alvarez-Valdes/Tamarit (cf. [1]). For the single-mode case RF is

calculated as follows:

RF :=
1

J

1

jRj

JX
j=1

X
r2R

8<
:

1 ; if kjr > 0

0 ; otherwise.

The resource factor reects the average portion of resources requested per job. It is a measure of

the density of the array kjr. If we have RF=1, then each job requests all resources. RF=0 indicates

that no job requests any resource, thus we obtain the unconstrained MPM-case. In order to use

RF for the multi-mode case as well, we generalize it straightforward to a type dependent resource

factor RF� , � 2 fR;N;Dg:

RF� :=
1

J � 2

1

j� j

J�1X
j=2

1

Mj

MjX
m=1

X
r2�

8<
:

1 ; if kjmr > 0

0 ; otherwise.

Again RF is normalized to the interval [0,1] with the interpretation very close to the one of the

original RF. It reects the average portion of resources out of one type, requested by each job-mode

combination [j,m] and it measures the density of the three dimensional array kjmr. Of course, our

RF equals the one proposed by Pascoe for the case N = D = 0 and Mj = 1, j = 1; : : : ; J . Table 6

shows the other input parameters as well.

For the generation of the resource request we use the following internal variables and data struc-

tures: First, we represent the information whether a job-mode combination [j,m] requests resource

r by a three-dimensional array Rq[j;m; r] of binary digits. Rq[j,m,r] is initialized with zeros and is

set equal to one, if and only if [j,m] requests resource r. The actual resource factor (ARF) is then

calculated as follows:

ARF� :=
1

J � 2

1

j� j

J�2X
j=2

1

Mj

MjX
m=1

X
r2�

Rq[j;m; r]:

The actual number of resources requested by [j,m] is obtained by

Q[j,m] :=
X
r2�

Rq[j;m; r]:

Finally we get CT, the actual set of choosable triplets,

CT := f[j;m; r];Rq[j;m; r] = 0 and Q[j;m] < Qmax
� g;

that is, the set of job-mode-resource combinations [j,m,r], which are furthermore choosable (Rq[j;m; r] =

0) without Q[j;m] exceeding Qmax
� .

During the two steps to be performed the internal variables are continuously updated.

In Step 1 for each job-mode combination [j,m], as far as the minimal number of requested resources

Qmin
� is not reached, additional resources are selected randomly. While, in Step 2, the actual

resource factor is less than the asserted one and in addition there are choosable triplets in CT, i.e.

CT 6= ;, the actual resource factor is incremented by randomly drawing a triplet out of CT. In
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Establishing the minimal num-

ber of resources requested by

[j,m]

Establishing the resource factor

2 1 : : : M2 1 : : : M2

1 2 3 1 2 3 1 2 3 1 2 3

0 0 1 : : : 1 0 0 1 0 1 : : : 1 0 1

...
...

...
...

J � 1 1 : : : MJ�1 1 : : : MJ�1

1 2 3 : : : 1 2 3 1 2 3 : : : 1 2 3

1 0 0 : : : 0 0 1 1 0 0 : : : 1 0 0

Step 1 Step 2

Qmin
� = 1; Qmax

� = 2

Table 7: Resource Factor Establishing

Table 7, where we have j� j = 3, the triplet (2,1,2) is not in the choosable set CT, because Qmax
� is

�xed to two.

If after Step 2 the actual resource factor declines more then tolerated, i.e.

ARF� =2 [RF� � (1� �RF ); RF� � (1 + �RF )];

then a warning message is given.

4.1.2 Level of Demand

If we have Rq[j;m; r] = 1, then a positive demand of the job-mode combination [j,m] for resource

r has to be generated. The interrelation between the durations of the modes and the demand for

resource r is reected by two types of functions. One of which is duration independent (F = 1)

and the other one is decreasing with the (increasing) duration (F=2). That is, for the renewable

and doubly constrained resources the per-period demand and for the nonrenewable resources the

total demand is generated as the interrelation prescribes. For each resource r 2 � the interrelation

is de�ned by

F� (r) :=

8<
:

1 : if rand[0; 1] < P� (F = 1)

2 : otherwise

given the type dependent probabilities P� (F = 1) and P� (F = 2). If F� (r) = 1, then for each job

the demand U 0 is randomly drawn out of the integer interval [Umin
� ; Umax

� ] and is then assigned

to all modes, which request this resource. In the case of F� (r) = 2, for each job j two levels are
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Figure 8: Interrelation between Demand and Duration

drawn randomly out of the parameter speci�ed interval:

U1 := rand[Umin
� ; Umax

� ] ; U2 := rand[Umin
� ; Umax

� ]:

Then U low and Uhigh are calculated as follows

U low := minfU1; U2g ; Uhigh := maxfU1; U2g

Let �Mj be the number of modes of job j with di�erent durations requesting resource r. We calculate

� :=
Uhigh � U low

�Mj

and yield �Mj intervals Ik as follows:

Ik := [Round(Uhigh ��k); Round(Uhigh ��(k � 1))] k = 1; : : : ; �Mj:
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Since the modes are labeled with respect to nondecreasing durations, we can now draw the demand

randomly out of the intervals corresponding to the durations. Figure 8 illustrates the generation

of the level of demand.

Remark 1

If for m; �m 2 f1; : : : ;Mjg, m 6= �m, it is djm = dj �m and Rq[j;m; r] = 1 = Rq[j; �m; r], then the

demand is generated randomly out of the same interval.

Due to the construction ine�ciency, which is de�ned in the following, might occur:

De�nition 2

A job j has ine�cient modes, if there are modes m and �m with djm � dj �m and k�jmr � k�j �mr for

all r 2 R [D and k�jmr � k�j �mr for all r 2 N [D.

If ine�cient modes occur for job j, we calculate the number of resources requested by job j

Qj :=

MjX
m=1

X
r2�

Rq[j;m; r]

and the request and demand generation is restarted with the additional constraint

Qj =

MjX
m=1

Q[j;m]:

If e�ciency is not obtainable within MaxTrials, the generation is interrupted and the parameters

have to be adjusted.

4.2 Resource Availability Generation

In order to express the relationship between the resource demand of the jobs and the resource

availability Cooper (cf. [10]) introduced the resource strength (RS), which is calculated as follows:

RSr :=
Kr

1

J

JX
j=1

kjr

:

Later the RS has been utilized by Alvarez-Valdes/Tamarit (cf. [1]). There are three main draw-

backs of the proposed measure. We will point them out and propose a new RS to overcome these

disadvantages:

� First, the RS is not standardized in the intverval [0,1].

� Second, a rather small RS does not guarantee a feasible solution. E.g. for three jobs with

kjr = 1, 1 and 10, respectively, one has to adjust the resource strength to RSr � 2:5 in order

to achieve a feasible solution.
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� Third and most important, regard the myopic fashion in which the scarcity of resources

is calculated. This shall be depicted with the following simple example: We consider two

projects, with exactly the same data except the network. Project 1 has a parallel structure,

where each job is immediate successor of the dummy source and immediate predecessors of

the dummy sink, whereas project 2 has a serial structure, where each job has exactly one

predecessor and one successor. Let us further assume that the resource availability is large

enough in order to assure feasibilty of both problems. Then the RS for both projects will be

exactly the same, but obviously the serially structured project, being the MPM-case, will be

quite easy to solve, whereas the parallel structured project is, dependent on the amount of

resource availability, rather di�cult.

In order to overcome these disadvantages, we have created the followingmethodology for a measure

of resource scarceness which is applicable to all types of resources. We determine a minimal demand

Kmin
r as well as a maximal demandKmax

r and let the resource availability be a convex combination

of the two with RS� as scaling parameter : Kr := Kmin
r +RS� (K

max
r �Kmin

r ). Thus with respect

to one resource we will get the smallest feasible resource availabilty for RS� = 0. For RS� = 1 the

amount of resources is just large enough to achieve the MPM-case.

For the nonrenewable resources r, r 2 N [D, the minimal and maximal availabilities to complete

the project can be calculated as follows:

Kmin
r :=

J�1X
j=2

Mj

min
m=1

fk�jmrg ; Kmax
r :=

J�1X
j=2

Mj

max
m=1

fk�jmrg:

For a given type dependent resource strength RS� 2 [0; 1] the availability is

K�
r := Kmin

r +Round(RS� (K
max
r �Kmin

r )):

If the considered resource is renewable the minimal demand is

Kmin
r :=

J�1
max
j=2

�
Mj

min
m=1

fk�jmrg

�
:

The maximal demand is calculated as the peak demand of the precedence preserving earliest

start schedule. Thereby each job is performed in the lowest indexed mode employing maximal

per-period demand with respect to the resource under consideration. That is, we determine the

maximal per-period demand of job j with respect to resource r

k�jr :=
Mj

max
m=1

fk�jmrg

and the corressponding mode with shortest duration:

m�

jr :=
Mj

min
m=1

fmjk�jmr = k�jrg

Given the precedence relations and due dates of the project we can now calculate the earliest

start schedule with the modes determined. We obtain the resource dependent start time ST r
j and
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completion time CT r
j of job j, j = 2; : : : ; J � 1. We then calculate the peak period demand

Kmax
r :=

�T
max
t=1

8>><
>>:

J�1X
j=2

STr
j
+1�t�CT r

j

kjm�
jr
r

9>>=
>>;

and the available amount using the type dependent resource strength RS�

K�
r := Kmin

r + Round(RS� (K
max
r �Kmin

r )): (8)

By constuction we can state the following:

Remark 2

(a) If j� j = 1 and RS� = 0, then the lowest resource feasible level with respect to � will be

generated.

(b) For RS� = 1 the resource unconstrained MPM-case with respect to � will be generated.

(c) IF RS� << 1 and Mj > 1 feasibility of the problem can not be assured, because of mode

coupling via resource constraints.

5 Computational Results

5.1 Single-Mode Case

Currently the most advanced exact procedure for solving makespan minimization problems seems

to be the implicit enumeration procedure of the B&B type with backtracking from Demeulemeester

(cf. [17], [18]). It is coded in C and solves the fourty-three 27-job problems out of the 110 Patterson

instances in an average computational time of 1.06 seconds to optimality on an IBM PS/2 Model

55sx (80386sx processor, 15 Mhz clockpulse). We used the original implementation of the algorithm

provided by Demeulemeester in our computational study.

We have carried out two series of experiments for single-mode problems. First we used a full

factorial design, where we varied the complexity C, the resource factor RF and the resource strength

RS. The constant and the varying parameter levels are documented in Table 8 and 9, respectively.

Obviously we have jN j = jDj = 0 and PR(F = 1) = 1. Using 10 projects for each combination of

C, RF and RS a total of 3 � 4 � 4 � 10 = 480 instances were generated. All of them were solved with

the exact solution procedure. Utilizing the previously described machine we imposed a time limit

of 3600 seconds on the maximal CPU time.

Our 480 instances have been solved in 461.25 seconds on the average. The minimum solution time

turned out to be 0.0 seconds (which is actually less than 0.05 seconds), while the maximumsolution

time was the imposed limit of 3600 seconds. Table 10 provides the frequency distribution of the

solution times. Among the 65 very hard problems which needed more than 1000 CPU-seconds
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J Mj dj jRj UR QR S1 Sj PJ Pj

min 30 1 1 4 1 1 3 1 3 1

max 30 1 10 4 10 4 3 3 3 3

Table 8: Constant Parameter Levels for Single-Mode Instances under Full Factorial Design

C 1.5 1.8 2.1

RFR 0.25 0.5 0.75 1.0

RSR 0.2 0.5 0.7 1.0

Table 9: Variable Parameter Levels for Single-Mode Instances under Full Factorial Design

were 52 for which an optimal solution could not either be found or veri�ed within the imposed

time limit.

In order to �nd out the e�ects of the di�erent parameters we performed a mean value analysis

regarding CPU-times for each of the varying parameters.

The e�ects of altering the complexity C can be seen in Table 11. As C is enlarged from 1.5 to 2.1

the solution times decrease. This is due to the fact that adding more precedence relations to the

network lowers the number of feasible schedules for a given upper bound on the projects makespan.

This reduces the enumeration tree and makes the problems more easy. The e�ect has already been

mentioned by Alvarez-Valdes/Tamarit for heuristics (cf. [1]).

The increase of the resource factor results in an increase of solution times (cf. Table 12). This

contradicts the results of Alvarez-Valdes/Tamarit. They observed that problems with a resource

factor of 1.0 were easier than ones with a resource factor of 0.5. We assume that their results were

somewhat distorted through the use of a myopic resource strength, which has already been pointed

out in section 4. It can be concluded that problems become harder, when the average portion of

resources requested per job increases. It has to be remarked that the majority of the 110 instances

of Patterson have a resource factor of 1.0.

From Table 13 it can be seen that the resource strength has the strongest impact on solution

times. Problems with a RSR of 0.2 turned out to be the hardest. Out of those 120 instances

Range [0,0.1] (0.1 , 1] (1,10] (10,100] (100,1000] �1000

Instances 165 142 46 36 26 65

Table 10: Frequency Distribution of Solution Times for Single-Mode Instances under Full Factorial

Design
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C 1.5 1.8 2.1

�CPU 674.76 477.80 231.19

Table 11: E�ects of Complexity C on Solution Times

RFR 0.25 0.5 0.75 1.0

�CPU 0.30 128.35 787.98 928.30

Table 12: E�ects of the Resource Factor RFR on Solution Times

for 47 the optimum solution could not be found or veri�ed within the imposed time limit. The

problems with a RSR of 1.0 are not resource-constrained anymore, thus the optimal solution is the

MPM-schedule.

RSR 0.20 0 .50 0.70 1.0

�CPU 1551.52 247.83 45.60 0.03

Table 13: E�ects of the Resource Strength RSR on Solution Times

In order to get even more insight into the e�ects of the parameters on the solution time, we have

chosen the combination C=1.5, RF=0.5 and RS=0.5 for which an average solution time of 23.59

seconds was needed. Using a ceteris paribus design we changed just one parameter at a time and

generated again 10 instances for each parameter level remaining w.r.t. Tables 8 and 9.

The e�ect of the number of renewable resources can be seen in Table 14. It is quite intuitive that

an increasing number of constrained resources complicates the problem.

The e�ects of the number of start activities is depicted in Table 15. Increasing the number of start

activities, keeping the number of jobs and precedence relations constant, generally results in more

parallelism of the network, which makes the problem harder to solve.

Reasoned by the strong impact of the resource strength on solution time, indicated in the full

factorial design study, a more thoroughly study on the RSR has been performed. Table 16 shows the

results of varying RSR from 0 to 1 in steps of 0.1. The average solution time continuously increases

with decreasing RSR. The hardest problems are the ones where the minimal resource availability is

provided. This relationship between hardness of the problem and resource scarcity deviates from

the function conjectured by Elmaghraby and Herroelen (cf. [22]) and the computational study

presented by Alvarez-Valdes/Tamarit (cf. [1]).

Finally the e�ect of a growing number of jobs is outlined in Table 17. Since it is well known that

the problem is NP-complete with respect to the number of activities (cf. [27]), it is not surprising
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jRj 1 2 3 4 5 6

�CPU 0.09 1.10 4.29 23.59 138.51 406.15

Table 14: E�ects of the Number of Resources jRj on Solution Times

S1 1 2 3 4 5 6

�CPU 2.75 8.74 23.59 33.70 90.97 134.29

Table 15: E�ects of the Number of Start Activities S1 on Solution Times

that solution times grow rapidly with the number of jobs.

To sum it all up, even the single-mode case is less tractable than suggested by previously published

work based on the Patterson test data.

5.2 Multi-Mode Case

Once more for makespan minimization problems we conjecture that the e�ects of the complexity,

the number of constrained resources, the number of start activities and the number of jobs are

about the same for the single- and the multi-mode case. Therefore we concentrated on the mutually

e�ects of the resource factor and the resource strength for renewable and nonrenewable resources.

Again we have utilized a full factorial design with the constant and varying parameter levels as

given in Table 18 and 19, respectively. With 10 instances for each level combination of the varying

parameters we generated 4 � 4 � 2 � 2 � 10 = 640 problems.

Each problem has been solved with the state of the art solution procedure of Patterson et al.

(cf. [41]). It is a branch & bound based enumeration algorithm of the backtracking variety.

Computational results are given in Patterson et al. (cf. [42]). There, 91 instances have been

generated with characteristics similar to the ones of the 110 instances by Patterson. The number

of jobs ranged between 10 and 500, where 75 instances had up to 30 jobs. The solution procedure

has been coded in Fortran and implemented on an IBM 4381 mainframe computer. For an imposed

time limit of 1 (10) minutes 30 (33) of the problems with up to 50 jobs could be solved to optimality.

The preponderance of these problems ranged between ten and thirty jobs.

Since the original solution procedure was not available to us, we recoded it in C. Our code has been

RSR 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

�CPU 3203 2545 1177 739 573 23.59 16.15 1.62 0.47 0.09 0.04

Table 16: E�ects of the Resource Strength RSR on Solution Times
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J 10 20 30 40

�CPU 0.06 0.32 23.59 942.09

Table 17: E�ects of the Number of Jobs J on Solution Times

J Mj dj jRj UR QR jN j UN QN S1 Sj PJ Pj

min 10 3 1 2 1 1 2 1 1 3 1 3 1

max 10 3 10 2 10 2 2 10 2 3 3 3 3

Table 18: Constant Parameter Levels for the Multi-Mode Instances under Full Factorial Design

implemented on an IBM RS/6000 550 workstation, which is approximately 5 to 6 times faster than

the IBM 4381 mainframe and about 50 times faster than the IBM PS/2 55sx. Because, as already

pointed out in Section 4, we could not guarantee feasibility, only 536 of the 640 problems had a

feasible solution. The average time to �nd and verify the optimal solution was 74.31 seconds. The

minimum and maximum time was less than 0.5 seconds and 2016.25 seconds, respectively. Table

20 gives the frequency distribution of the solution times.

In Table 21 the e�ects of varying resource factors is documented. With an increasing resource

factor problems become harder. Solution times are far more sensitive to RFN (factor 15) than to

RFR (factor 1.5).

The e�ects of the resource strength can be seen in Table 22. As the nonrenewable resources

become scarce, problems turn to be much more di�cult. Amazingly this does not hold for the

renewable resources in general. The bottom line of Table 22 shows that the reverse is true; problems

become harder to solve with increasing availability. If one recalls the results of the single-mode

case, this is quite unexpected. But a more thorough study of Table 22 provides an explanation.

In the case of su�cient nonrenewable resources, i.e. RSN � 0:7, solution times increase with

decreasing availability of renewable resources. But with small amounts of nonrenewable resources

(RSR � 0:5) the e�ect reverses. Due to the strong impact of RSN the mean solution time only

shows the tendency for scarce nonrenewable resources.

To sum it all up, we could not reproduce the promising results provided by Patterson et al. (cf.

Parameter Levels

RS 0.5 1.0

RS 0.2 0.5 0.7 1.0

Table 19: Variable Parameter Levels for Multi-Mode Instances under Full Factorial Design
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Range [0,0.1] (0.1,1] (1,5] (5,10] (10,25] (25,50] (50,100] (100,250] �250

Instances 142 40 76 50 62 38 31 46 51

Table 20: Frequency Distribution of Solution Times for the Multi-Mode Instances

RFR

0.5 1.0

0.5 6.92 9.24 8.10
RFN

1.0 105.55 142.44 124.85

62.14 85.70 74.31

Table 21: E�ects of Varying Resource Factor

[42]) for the multi-mode case. Moreover, multi-mode instances in general are tractable only for a

very restricted number of jobs. Thus additional work has to be done to speed up convergence.

6 Conclusions

PROGEN, a project generator for a broad class of precedence- and resource-constrained scheduling

problems, which utilizes well-known and new summary measures, has been presented. Benchmark

instances for the single- and the multi-mode case of project scheduling have been produced and

solved with the state of the art B&B-procedures.

The results show the strong impact of the proposed parameters, furthermore very hard and very

easy instances can be discriminated. In general, the promising results of previously published

studies do not hold true; i.e. even very small problem instances still remain untractable with the

optimal state of the art algorithms.

RSR

0.2 0.5 0.7 1.0

0.2 267.86 281.51 441.03 443.08 363.13

0.5 38.69 46.80 58.71 101.52 62.47
RSN 0.7 15.14 14.97 12.84 11.25 13.53

1.0 12.66 3.27 0.48 0.06 3.57

54.96 59.20 84.70 95.53 74.31

Table 22: E�ects of Varying Resource Strength
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The availability of the generator as well as the 1216 instances used in the computational study

provide a tool for the evaluation of algorithms within the project scheduling environment. Due to

the versatility of the generator it can be used in related areas, e.g. single- and multiple-machine

scheduling.

Acknowledgement: We thank Erik Demeulemeester, Katholieke Universiteit Leuven, for pro-

viding us with the code of his algorithm.
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Appendix

A Functional Description of PROGEN

PROGEN has been coded in Borland Turbo Pascal 6.0. The code consists of the following eight

units (cf. Table 23) with the corresponding tasks. All units except TYPEDECL have already been

compiled and are available in the Turbo Pascal unit format (TPU). The code of TYPEDECL and

PROGEN is amenable, so that the users can adjust the size of arrays to their speci�c needs. After

adjustment TYPEDECL has to be compiled and all eight units have to be linked under Turbo

Pascal 6.0 with the BUILD command. User who do not wish to change the size of arrays can use

the readily available execution �le of PROGEN.

PROGEN : main program.

TYPEDECL : de�nition of constants, types and variables (data structures).

NETWGEN : generation of the network.

REQGEN : generation of the resource request and level of demand.

AVAILGEN : generation of the resource availability.

INOUT : read and write routines.

UTILITY : support functions, e.g. the random number generator of Schrage [49].

Table 23: Units of PROGEN

When starting PROGEN one needs a �le with the parameter settings, henceforth refered to as

basedata-�le. The basedata-�le has always the su�x BAS. In Table 24 an example of such a

basedata-�le is depicted. The input relates to the parameters as presented in sections 3 and

4. Starting PROGEN one gets the menu shown in Table 25. In option "1" one has to choose a

basedata-�le, e.g. EXPL.BAS. The basedata-�le is checked for existence on the actual subdirectory.

Option "2" allows one to de�ne a seed for the implemented random number generator. By default

the random number generator of Turbo Pascal will be invoked once to generate the seed for the

congruence-generator. The default value for the number of instances is 10. If a di�erent number of

instances is required, one can use option "3" for an adjustment. All adjustments are displayed in

the upper right part of the menu. With option "4" the instance generator is started. It will create

the predescribed number of instances. The instances have the same name as the basedata-�le, but

with the su�x DAT. They are labeled consecutively, e.g. one will get the �les EXPL1.DAT to

EXPL10.DAT.

The warning and error messages of the generated instances will be written in a separate �le, which

also has the name of the basedata-�le and the su�x ERR, e.g. EXPL.ERR. The possible error

messages are shown in Table 26. They can be divided in four classes. Messages about wrong
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input (11-22), messages about the process of generation (1,2,29), messages about the nontolerated

deviation of parameters (3,4,23-28) and serious errors, which will lead to the interruption of the

generation process (1000-1002). An example for an instance �le and the corresponding error �le

is displayed in Tables 27 and 28, respectively. ERROR 1 and ERROR 1001 should not occur, if it

does, please send input �le and seed to the authors. In order to avoid the user from unintentional

erasing instance �les one cannot generate problems from a basedata-�le, if an error �le with the

same name already exists in the actual subdirectory. Therefore those instances have to be erased

before restarting the generation. In case of any problems please contact one of the authors.

SAMPLEFILE BASEDATA

PROJEKTS

NrOfPro : 1 & number of projects

MinJob : 8 & minimal number of jobs per project

MaxJob : 8 & maximal number of jobs per project

MaxRelDate : 0 & maximal release date

DueDateFactor : 0.0 & maximal due date

MODES

MinMode : 1 & minimal number of modes

MaxMode : 2 & maximal number of modes

MinDur : 1 & minimal duration

MaxDur : 10 & maximal duration

NETWORK

MinOutSource : 1 & minimal number of start activities per project

MaxOutSource : 3 & maximal number of start activities per project

MaxOut : 3 & maximal number of successor per job

MinInSink : 1 & minimal number of finish activities

MaxInSink : 2 & maximal number of finish activities

MaxIn : 3 & maximal number of predecessors

Complexity : 1.5 & complexity of network

RESSOURCEREQUEST/AVAILABILITY

Rmin : 2 & minimal number of renewable resources

Rmax : 2 & maximal number of renewable resources

RminDemand : 1 & minimal (per period) demand

RmaxDemand : 10 & maximal (per period) demand

RRMin : 1 & minimal number of resources requested

RRMax : 2 & maximal number of resources requested

RRF : 0.5 & resource factor

RRS : 0.2 & resource strength

Number R-Func. : 2

p1 : 0.0 & probability to choose a constant function

p2 : 1.0 & probability to choose a decreasing function

Nmin : 2 & cf. renewable resources

Nmax : 2

NminDemand : 1

NmaxDemand : 10

NRMin : 1

NRMax : 2

NRF : 1.0

NRS : 0.7

Number N-Func. : 2

p1 : 0.0

p2 : 1.0
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Dmin : 0 & cf. renewable resources

Dmax : 0

DminDemand : 0

DmaxDemand : 0

DRMin : 0

DRMax : 0

DRF : 0.0

DRST : 0.0

DRSP : 0.0

Number D-Func. : 2

p1 : 1.0

p2 : 0.0

LIMIT OF ITERATIONS

Tolerance Network : 0.05 & tolerated complexity deviation

Tolerance RF : 0.05 & tolerated resource factor deviation

MaxTrials : 200 & maximal number of trials

FORMAT OF BASE FILE

- a colon has to be followed by a value

- only spaces are allowed between colon and value

- a comment is allowed to follow a value

- comments are allowed if there is no colon in

- value and comment have to be seperated by space

- value is integer with the exception of

-> due date factor -> complexity -> resource factor

-> resource strength -> function probabilities -> tolerances

Table 24: Parameter Settings in the Basedata-File

======================================================================

Project Generator PROGEN (Version 2.0)

======================================================================

file basedata : no basefile

initial value : randomly

number of instances : 10

1 - basedata

2 - initial value

3 - number of instances

4 - generate

5 - end program

-->

Table 25: Menue of Progen
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ERROR 1: Predecessor could not be determined.

ERROR 2: Successor could not be determined.

ERROR 3: Complexity could not be achieved (low).

ERROR 4: Complexity could not be achieved (high).

ERROR 11: max # req. resources > # resources for type R; -> max# := #.

ERROR 12: max # req. resources > # resources for type D; -> max# := #.

ERROR 13: max # req. resources > # resources for type N; -> max# := #.

ERROR 14: min # req. resources > max # for type R; -> min # := max #.

ERROR 15: min # req. resources > max # for type D; -> min # := max #.

ERROR 16: min # req. resources > max # for type N; -> min # := max #.

ERROR 17: RF for R can`t be achieved; min # req. resources too large.

ERROR 18: RF for D can`t be achieved; min # req. resources too large.

ERROR 19: RF for N can`t be achieved; min # req. resources too large.

ERROR 20: RF for R can`t be achieved; max # req. resources too small.

ERROR 21: RF for D can`t be achieved; max # req. resources too small.

ERROR 22: RF for N can`t be achieved; max # req. resources too small.

ERROR 23: Obtained RF falls short the tolerated range for R.

ERROR 24: Obtained RF falls short the tolerated range for D.

ERROR 25: Obtained RF falls short the tolerated range for N.

ERROR 26: Obtained RF exceeds the tolerated range for R.

ERROR 27: Obtained RF exceeds the tolerated range for D.

ERROR 28: Obtained RF exceeds the tolerated range for N.

ERROR 29: More than 1 trial was used to produce a job with non dominated modes.

ERROR1000: Network generation without success.

ERROR1001: Redundant arcs in network.

ERROR1002: Non dominated modes for a job could`nt be produced within maxtrials.

Table 26: Error Messages

************************************************************************

file with basedata : expl.bas

initial value random generator: 530450642

************************************************************************

projects : 1

jobs (incl. supersource/sink ): 10

horizon : 47

RESOURCES

- renewable : 2 R

- nonrenewable : 2 N

- doubly constrained : 0 D

************************************************************************

PROJECT INFORMATION:

pronr. #jobs rel.date duedate tardcost CPM-Time

1 8 0 20 2 20
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************************************************************************

PRECEDENCE RELATIONS:

jobnr. #modes #successors successors

1 1 2 2 3

2 2 3 6 7 9

3 2 3 4 5 9

4 1 1 7

5 2 2 6 7

6 2 1 8

7 1 1 8

8 1 1 10

9 1 1 10

10 1 0

************************************************************************

REQUESTS/DURATIONS:

jobnr. mode duration R 1 R 2 N 1 N 2

------------------------------------------------------------------------

1 1 0 0 0 0 0

2 1 6 7 0 2 5

2 9 7 0 1 3

3 1 1 0 7 8 7

2 3 0 5 8 4

4 1 3 3 0 9 3

5 1 7 5 0 8 10

2 7 0 4 5 6

6 1 1 0 6 8 8

2 9 0 4 2 8

7 1 2 2 0 4 3

8 1 10 3 0 1 5

9 1 4 0 10 6 5

10 1 0 0 0 0 0

************************************************************************

RESOURCEAVAILABILITIES:

R 1 R 2 N 1 N 2

9 11 43 43

************************************************************************

Table 27: Example Instance File

------------------------------------------------------------------------

sample file -->expl1.DAT

------------------------------------------------------------------------

ERROR 2: Successor could not be determined

ERROR 3: Complexity could not be achieved (low)

ERROR 2: Successor could not be determined

ERROR 3: Complexity could not be achieved (low)

ERROR 29: More than 1 trial was used to produce a job with non dominated modes

------------------------------------------------------------------------

Table 28: Example File Error Messages
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