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Abstract This paper discusses an extension of the classical resource-constrained

project scheduling problem in which the resource availability as well as the resource

request of the activities may change from period to period. While the applicability

of this extension should be obvious, we provide a case study in order to emphasize

the need for the extension. A real-world medical research project is presented which

has a structure that is typical for many other medical and pharmacological research

projects that consist of experiments. Subsequently, we provide a mathematical

model and analyze some properties of the extended problem setting. We also

introduce a new priority rule heuristic that is based on a randomized activity

selection mechanism which makes use of so-called tournaments. Finally, we report

our computational results for the original data of the medical research project as

well as for a set of systematically generated test instances.
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1 Introduction

The classical resource-constrained project scheduling problem (RCPSP) can be

summarized as follows: A project consists of J activities labeled j ¼ 1; . . .; J:
Usually two additional activities j = 0 and j = J ? 1 represent the start and the end
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of the project, respectively. Each activity j is associated with a processing time (or

duration) pj during which no interruption is allowed. An j activity may start once its

predecessors which are given by the set Pj are finished. The set of successors of

activity j is denoted as Sj. The resulting precedence network is assumed to be

acyclic. Resources are needed to carry out the activities. K resources are given.

Activity j requires rjk units of resource k in each period of its processing time. In

each period of the planning horizon, Rk units of resource k are available. The goal is

to determine a start and a finish time for each activity such that the makespan of the

project is minimized.

The origins of the RCPSP can be traced back to the late 1960s (Pritsker et al.

1969). Since then it has become a popular standard problem in operations research.

Several exact (Demeulemeester and Herroelen 1992; Mingozzi et al. 1998; Sprecher

2000) and many heuristic methods (Kolisch 1999; Kolisch and Hartmann 2006)

have been developed for the RCPSP. In addition, various extensions of the basic

RCPSP have been developed (for overviews see Brucker et al. 1999 and Hartmann

and Briskorn 2010). Among the most popular extensions are multiple modes for the

activities (Talbot 1982; Hartmann and Drexl 1998; Hartmann 2001), generalized

precedence constraints (Demeulemeester and Herroelen 1996; Dorndorf et al. 2000;

Neumann et al. 2002, 2003; Bianco and Caramia 2011) and alternative objectives

(Kimms 2001; Möhring et al. 2003; Neumann and Zimmermann 2000).

In this paper, we discuss an extension of the RCPSP that has not yet received the

attention that it deserves. Whereas the standard RCPSP assumes that resource

capacities and requests are constant over time, we consider resource capacities and

requests that may change from period to period. Sprecher (1994) and Hartmann

(1999) mention time-varying resource parameters but do not provide dedicated

solution methods. Bartusch et al. (1988) remark that time-dependent resource

availabilities and requests can be captured by an RCPSP with generalized

precedence constraints (cf. also de Reyck et al. 1999). According to Bartusch

et al. (1988), time-dependent resource availabilities and requests can be transformed

into constant ones by defining dummy activities which then have to be stitched

together using minimal and maximal time lags.

Several other researchers discuss approaches for generalized resource constraints.

A few papers (Klein 2000; Sprecher and Drexl 1998) consider time-dependent

resource capacities but constant demand. Poder et al. (2004) propose a model that

has some similarity with the RCPSP. The activity durations are not fixed, and their

resource requests are given as a continuous function over time. Solution methods

are not discussed. Some related research has been carried out for project scheduling

with labor constraints: Cavalcante et al. (2001) consider a problem similar to the

RCPSP in which a single resource (labor) with constant availability but time-

dependent requests is given. Drezet and Billaut (2008) discuss time-dependent

requests for labor resources, but their model contains several specific constraints

(e.g., legal requirements concerning the working time of employees) such that it is

considerably different from the classical RCPSP. The calender concept of Franck

et al. (2001) takes changes in the resource availability into account. There, activities

are interrupted during periods in which a resource is unavailable; afterwards, the
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activities are resumed. This increases the activity duration in terms of elapsed time

between start and finish.

Our purpose in this paper is to lay a foundation for research on the RCPSP with

time-dependent resource capacities and requests (we will refer to the extended

model as RCPSP/t). To underscore the practical relevance of this problem setting,

we first describe a real-world medical research project where the activities

correspond to experiments and the resources are laboratory staff and equipment.

This project is typical for other projects in medical and pharmacological research,

and it can be fully captured using the concepts of the RCPSP/t. We then present a

mathematical model for the RCPSP/t, examine its properties and sketch out a simple

randomized heuristic based on priority rules. After briefly giving our computational

results for the case study, we provide a pragmatic approach to generate test

instances for the RCPSP/t and summarize our computational results based on test

sets with different characteristics.

2 Problem setting

2.1 Case study: a medical research project

We consider a medical research project that was carried out at the medical faculty of

the University of Kiel (Germany). A detailed description of this project as well as

the results can be found in Löser et al. (1997). The goal of the project was to

examine the relationship between polyamine synthesis and cancer. In what follows,

we give a brief summary of those aspects of the project that are relevant for

scheduling. Further details can be found in Hartmann (1999).

The project consists of a set of experiments. An experiment is essentially the

analysis of a particular drug combination over a certain time. Each experiment has a

fixed duration, the durations of the experiments range between 2 and 8 days. Once

an experiment has been started, it may not be interrupted. Moreover, each

experiment is repeated several times in order to allow a statistical evaluation. The

number of required repetitions varies from experiment to experiment.

The temporal arrangement of the repetitions of one experiment is restricted. On

one hand, several repetitions should be carried out in parallel, that is, they should

start (and thus also finish) on the same day. The main advantage of this is that it

allows the researcher to dose the medication more accurately. On the other hand,

performing too many repetitions of an experiment in a parallel block may cause

systematic errors. Especially the last day of an experiment (i.e., the day on which

the analysis takes place) is assumed to be critical in this sense. Therefore, the

repetitions of one experiment should finish on a certain number of different days

which is given for each number of repetitions. Moreover, the repetitions of an

experiment should be distributed over the repetition blocks as evenly as possible.

These requirements can be captured as follows: Each experiment corresponds to a

number of activities, and each such activity represents a number of repetitions

which must start on the same day. Additional temporal constraints must be
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considered to ensure that the activities related to one experiment finish on different

days.

Two types of resources have to be taken into account. The first one is the

researcher who carries out all the experiments of the project. The researcher

specifies the days he or she is in the laboratory, typically Monday through Friday

plus certain weekends. When he is in the laboratory, the number of repetitions he

can handle at the same time is limited. Some experiments (and thus the related

activities) require the presence of the researcher on every day, others only on certain

days. The number of resource units required by an activity corresponds to the

number of repetitions. The second resource is the laboratory equipment. It is

available for this project only on certain predetermined days. In this particular

project, an activity needs the laboratory equipment only on the last day of its

duration (again, the number of units required corresponds to the number of

repetitions).

The researcher is responsible for determining a project schedule which observes

the restrictions given above. His objective is an early project completion. This also

leads to free laboratory capacities for further research projects.

To illustrate the project and how it can be captured using RCPSP concepts, we

consider the following example: The researcher can handle, say, 20 repetitions at

the same time, so he corresponds to a resource with a capacity of 20 on the days he

is in the laboratory and 0 otherwise. The laboratory equipment allows to carry out

the analysis of at most 6 repetitions per day, hence it is reflected by a resource with a

capacity of 6 when it is available for this project and 0 on other days. An experiment

with 8 repetitions is transformed into 3 activities, with 2 activities corresponding to

3 repetitions each and one corresponding to 2 repetitions (this way the distribution

of repetitions among the activities is as even as possible). These 3 activities must not

finish on the same day. If the experiment has a duration of 7 days, then the duration

of the three resulting activities is 7 as well. The activity that corresponds to the 2

repetitions requires 2 units of the researcher resource on days 1, 5, 6 and 7 and 0

units on days 2, 3 and 4. Moreover, this activity needs 2 units of the laboratory

equipment on day 7 and 0 units on days 1 through 6.

This description shows that the standard RCPSP concepts such as non-

preemptable activities with fixed durations, resources and makespan minimization

can be applied here. There are, however, two aspects that cannot be reflected within

the classical RCPSP: The resource capacities and requests in this project are not

constant over time, and certain activities are not allowed to finish on the same day.

Also note that standard precedence constraints of the RCPSP are not used in this

particular example, although they might of course be present in other cases.

2.2 Formal problem definition

In this section, we present a model that extends the standard RCPSP by two

concepts, namely time-dependent resource availability and request as well as a new

type of temporal constraints. The resulting model covers the medical research

project described in Sect. 2.1. Beyond that, it can be considered a very general

model with many potential applications.
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In a first step, we extend the standard RCPSP by generalizing the resource

constraints. As in the standard RCPSP, we consider J activities with non-

preemptable processing time (or duration) pj, predecessor set Pj and successor set Sj

for each activity j. For notational convenience, we also need the transitive closure of

the successor relation. Sj represents the set of immediate and non-immediate

successors of activity j. Two additional activities j = 0 and j = J ? 1 are dummy

activities with p0 = pJ?1 = 0 and mark the start and the end of the project,

respectively.

K resources are given. The capacity of resource k ¼ 1; . . .;K in period t ¼
1; . . .; T is denoted as Rkt, where T is the planning horizon. Each activity j requires

rjkt units of resource k in the tth period of its processing time, t ¼ 1; . . .; pj: We

assume the parameters (durations, capacities, resource requests) to be nonnegative

and integer valued. The objective is to determine a schedule (i.e., a start time for

each activity) with minimal makespan such that both the temporal and the resource

constraints are fulfilled.

Following Pritsker et al. (1969), we define binary decision variables xjt for each

activity j ¼ 0; . . .; J þ 1 and each period t ¼ 0; . . .; T by

xjt ¼
1; if activity jis finished at the end of period t
0; otherwise.

�

We obtain the following mathematical model for the resource-constrained project

scheduling problem with time-dependent resource availabilities and requests

(RCPSP/t). It is a rather straightforward extension of the model first presented by

Pritsker et al. (1969).

Minimize
XT

t¼0

t � xJþ1;t ð1Þ

subject to

XT

t¼0

xjt ¼ 1 j ¼ 0; . . .; J þ 1
ð2Þ

XT

t¼0

t � xht �
XT

t¼0

ðt � pjÞ � xjt j ¼ 0; . . .; J þ 1; h 2 Pj ð3Þ

XJ

j¼1

Xtþpj�1

q¼t

rj;k;tþpj�q � xjq�Rkt k ¼ 1; . . .;K; t ¼ 1; . . .; T ð4Þ

xjt 2 f0; 1g j ¼ 0; . . .; J þ 1; t ¼ 0; . . .; T ð5Þ
Objective (1) minimizes the finish time of the dummy sink activity and,

therefore, the project’s makespan. Constraints (2) secure that each activity is

executed exactly once, while constraints (3) take care of the standard precedence

relations. Constraints (4) reflect the time-dependent resource restrictions. Finally,

constraints (5) define the binary decision variables.
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In a second step we take a look at the new temporal constraints sketched out in

Sect. 2.1. There, a group of activities may not finish at the same time. This can be

captured as follows: Let a be the number of activity groups which are related to this

type of constraint. Each set Ai with i ¼ 1; . . .; a represents such an activity group,

that is, any two activities j; h 2 Ai must be assigned different finish times. This can

be reflected by adding the following constraints to the RCPSP/t model (1)–(5):X
j2Ai

xjt � 1 i ¼ 1; . . .; a; t ¼ 1; . . .; T ð6Þ

Note, however, that constraints (6) are special case of the time-dependent

resource constraints (4). In fact, each set Ai can be modeled as an additional

resource k with a constant availability Rkt = 1 for all t ¼ 1; . . .; T: The time-

dependent request of each activity j 2 Ai for this new resource k would be defined as

rjkt ¼
0 for t ¼ 1; . . .; pj � 1

1 for t ¼ pj:

�

Consequently, the RCPSP/t as given by (1)–(5) fully covers medical research

projects as described in Sect. 2.1. It should be mentioned that also other variants of

the temporal constraints introduced here can be included in a similar way, especially

the restriction that activities are not allowed to start at the same time or are not

allowed to overlap at all. Such temporal constraints [which, unlike the standard

precedence constraints (3), do not impose a partial order on the activities] are

special cases of the resource constraints (4) as well.

Finally, we should point to another property of the RCPSP/t. Due to the variation

over time in the resource constraints, there might not be a feasible solution within

the given planning horizon, even if the planning horizon is long (e.g., the sum of all

activity durations). This distinguishes the RCPSP/t from the classic RCPSP, for

which a feasible solution exists (provided that rjk B Rk for each activity j and each

resource k).

2.3 Time windows and lower bound

For the standard RCPSP, a simple procedure allows to derive time windows for the

activities. We assume that the activities are labelled in a way that each activity has a

higher number than any of its predecessors. The earliest start time of the start

activity is defined as ES0 = 0. Now the earliest start time of activity j ¼ 1; . . .; J þ 1

is the maximum of the earliest finish times of its predecessors, that is, ESj ¼
maxfESi þ pi j i 2 Pjg: The latest finish time of the end activity is equal to the

planning horizon, so we have LFJ?1 = T. Then the latest finish time of activity

j ¼ J; . . .; 0 is the minimum of the latest start times of its successors, that is, LFj ¼
minfLFi � pi j i 2 Sjg: Any activity j must be processed within the time window

[ESj, LFj], otherwise the project would not be finished within the planning horizon.

These time windows can be applied to the RCPSP/t without modification, but it is

also possible to extend the procedure above by taking the time-dependent resources

into account. ESj
* then is the earliest feasible start time with regard to the precedence

constraints and the resource request of activity j. Here, resource feasibility means
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that we have rj;k;t�ES�jþ1�Rkt for each time t ¼ ES�j ; . . .;ES�j þ pj � 1 and each

resource k. Precedence feasibility implies that ES�j � maxfES�i þ pi j i 2 Pjg holds.

Likewise, LFj
* is the latest feasible finish time with regard to the precedence

relations and the resource demand of activity j.
With this extended (but still simple) procedure we exploit the time-dependent

availabilities. By excluding start and finish times with insufficient resources, the

time windows become tighter. Note that for the standard RCPSP (and for the

RCPSP/t with sufficient capacities over time for each single activity) we have

ESj
* = ESj and LFj

* = LFj. Also observe that LFj
* - ESj

* \ pj may occur if the

resources are scarce. In such a case there is no feasible solution.

There are several applications of these time windows which will be used in the

remainder of this paper. First, the latest finish times and the latest start times are

often used in priority rule heuristics. Second, the earliest finish time of the end

activity is a lower bound on the project’s makespan which can be used to evaluate

heuristics if the optimal makespan is not known. To avoid ambiguity, we refer to the

lower bound according to the standard procedure as LB while the extended lower

bound is denoted as LB/t. Third, the time windows allow to reduce the number

of variables in the mathematical programming formulation (cf., e.g., Hartmann

1999).

3 Priority rule heuristics

3.1 Schedule generation scheme

Many heuristics for project scheduling problems are based on a so-called schedule

generation scheme (SGS). An SGS schedules one activity in each step until a

complete schedule is constructed. In this process, it controls the calculation of the

set of those activities that are eligible for scheduling, and it guides the start time

computation for a selected activity. The activity selection itself, however, is based

on the underlying heuristic approach; it can be done by, e.g., a priority rule or a

genetic representation. Before we turn to a heuristic for the RCPSP/t, we take a brief

look at the properties of SGS when applied to the RCPSP/t.

Two SGS are available for the standard RCPSP, namely the parallel SGS which

is based on time-incrementation and the serial SGS which is based on activity-

incrementation (for detailed descriptions see Kolisch and Hartmann 1999). The

parallel SGS operates on the set of non-delay schedules whereas the serial SGS

constructs active schedules (an active schedule is a schedule in which no activity

can be left-shifted, for non-delay schedules cf. Sprecher et al. 1995). For the

RCPSP, the search space of the parallel SGS might not contain any optimal solution,

whereas the search space of the serial SGS always contains an optimal solution (cf.

Sprecher et al. 1995).

The two SGS are applicable to the RCPSP/t as well. We now examine the

behavior of the serial SGS in the presence of time-dependent resource availabilities

and requests. Roughly speaking, the serial SGS works as follows: In each step, it
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selects an eligible activity and schedules it at the earliest feasible time (an activity is

called eligible if all its predecessors have already been scheduled). The findings for

the serial SGS are summarized in the following remark which highlights some

structural similarities and differences between the RCPSP and the RCPSP/t.

Remark 1 For the RCPSP/t the following propositions hold:

(i) All schedules constructed by the serial SGS are active ones.

(ii) For some instances there are active schedules which cannot be generated by

the serial SGS.

(iii) For some instances the serial SGS might not find an existing optimal solution.

Since the serial SGS schedules all activities at the earliest feasible time, all

schedules are active ones, which is of course the same for the RCPSP and the

RCPSP/t. Unlike for the RCPSP, however, the serial SGS does not produce all
active schedules for the RCPSP/t and might thus miss an optimal solution. This is

shown by the following counterexample: We have J = 2 activities with processing

times p1 = p2 = 2. There are no precedence relations. The planning horizon is

T = 4 periods. We have a single resource with time-dependent capacity

R1t ¼
2; if t 2 f1; 2; 4g
4; if t ¼ 3:

�

The time-varying resource requirements of the two activities are given by

r11t ¼ r21t ¼
1; if t ¼ 1

2; if t ¼ 2:

�

Now consider the schedules shown in Fig. 1. Schedule (a) is active as no left-

shift is possible, and it is optimal with a makespan of 3 periods. The serial SGS will

schedule either activity 1 first and then 2, or 2 first and then 1. Since the serial SGS

schedules an activity as early as possible, the two solutions that can be found by the

serial SGS are those of Fig. 1b and c, respectively. Obviously, both are active, but

none of them is optimal.

Nevertheless, we will use the serial SGS in our priority rule heuristics for the

RCPSP/t. It is a simple and effective method, and in fact it seems reasonable to

(c)(b)(a)
1 2 3 4 t

1

2

3

4

R1t

1

2

2

1 2 3 4 t

1

2

3

4

R1t

1 2

1 2 3 4 t

1

2

3

4

R1t

2 1

Fig. 1 Schedules for the counterexample instance
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schedule activities as early as possible given that the goal is to minimize the

makespan. While certainly not desirable, reducing the search space and thus

excluding all optimal schedules needs not be a severe issue: A smaller search space

may in fact focus on schedules of good average quality, even if it might not contain

an optimal solution. In other words, the risk of eventually excluding the optimal

schedules can be more than compensated for by omitting many inferior schedules.

This is supported by the the computational results of Kolisch and Hartmann (2006)

for large instances of the standard RCPSP, where the parallel SGS clearly

outperforms the serial one although it might exclude all optimal schedules. After all,

we consider priority rule methods here, and such heuristics are employed for finding

good solutions very quickly (and not for fine-tuned long-term optimization). With

this in mind, the choice of the serial SGS for the RCPSP/t seems to be appropriate.

Thus, the serial SGS will be employed in the heuristic introduced below.

3.2 A multi-pass heuristic based on tournaments

Being simple and fast, priority rule based heuristics are popular methods to find

acceptable solutions quickly. They are applied either to find schedules or, if the

schedule quality is of particular importance, to find starting solutions for

metaheuristics.

Many different priority rule based heuristics have been developed for the

standard RCPSP, see Kolisch and Hartmann (1999). Essentially, such heuristics

follow an SGS and construct a schedule step by step. In each step a priority rule

decides which activity is scheduled. Of particular importance are multi-pass priority

rule based methods which apply the SGS multiple times and thus lead to several

schedules from which the best can be picked. A common way to obtain a different

schedule in each pass is to randomize the selection of the next activity to be

scheduled. There are several concepts for randomizing the activity selection.

Among the most popular ones is the calculation of selection probabilities based on

the values of the priority rule. The higher the priority of an activity, the higher its

probability to be selected. Quite a few ways to transform the activity priorities into

selection probabilities have been proposed, see Kolisch and Hartmann (1999).

In what follows, we introduce a multi-pass priority rule based heuristic based on

the serial SGS. It makes use of a new, simple and intuitive concept for randomizing

the activity selection. Unlike many methods in the literature, this concept is not

based on the explicit computation of selection probabilities. Instead, it employs the

idea of tournament selection which originally is an approach to select individuals

from the population of a genetic algorithm (Goldberg and Deb 1991; Michalewicz

1995).

Generally, the idea of a tournament is as follows: Z individuals are picked from a

population of n individuals (either with or without replacement). Thereby, all

individuals have the same probability to be picked. Then the fittest of these Z
individuals has ‘‘won the tournament’’ and is selected. This way, higher fitness

values imply higher probabilities to be selected. The tournament size implicitly

influences the selection probability: The larger the tournament size Z, the stronger

Project scheduling with resource capacities

123



the selective pressure, that is, the more likely the selection of an individual with a

very high fitness.

This idea can be used for randomized activity selection within an SGS. The

individuals correspond to the eligible activities and the individual’s fitness

corresponds to the activity’s value derived from a given priority rule. Hence, in

each step of the SGS we determine the next activity to be scheduled by picking Z
activities from the eligible set E at random (i.e., each activity has the same

probability 1
jEj to be picked) and then select the one with the best priority value.

Note, however, that the selective pressure reflected by Z must be seen in relation

to the number of eligible activities. A fixed value for Z will be very selective for a

small eligible set and not very selective for a large eligible set. The size of the

eligible set changes during the steps of the SGS (and also depends on the project

size and the precedence relations in the first place). Thus, it would not be beneficial

to fix Z as this would not allow to control the selective pressure effectively. To solve

this issue, we introduce a factor u 2 ½0; 1� that determines what fraction of the

eligible set should be selected for a tournament. In addition, we stipulate that the

tournament size should be at least two (this enforces a minimum selective pressure).

Denoting the current eligible set as E, we obtain Z ¼ maxfu � jEj; 2g (values for Z
are rounded). For example, with |E| = 8 eligible activities and a tournament factor

of u ¼ 0:4 we obtain Z ¼ 0:4 � 8 ¼ 3:2; which is rounded to Z = 3 eligible

activities to be picked for the tournament.

The tournament heuristic based on the serial SGS can be summarized as

displayed in Fig. 2. The approach is completed by the definition of a priority rule

(see Sect. 3.3), a tournament factor u; and a stopping criterion. The stopping

criterion could be a maximum number of passes, a maximum number of consecutive

passes without improvement of the best current solution, or a time limit. Throughout

this paper, we use a maximum number of passes (i.e., number of schedules allowed

to be generated) as stopping criterion.

3.3 Priority rules

To complete the tournament heuristic proposed in the previous subsection, we have

to define a priority rule. While most rules developed for the standard RCPSP could

be used, we outline a priority rule that takes the specific characteristics of the

RCPSP/t into account. We will refer to the rule as CPRU, which stands for critical
path and resource utilization.

The CPRU priority rule consists of two parts. The first part focuses on the

precedence relations and activity durations. For a given activity j, we calculate the

associated critical path length CPj = T - LSj
*, that is, the planning horizon minus

the latest start time according to Sect. 2.3. Clearly, it makes sense to give priority to

an activity with a long critical path, that is, a large CPj value.

The second part puts the emphasis more on the time-dependent resource

availabilities and demands. For a given activity j, we first determine for each

resource the cumulated demand during the activity’s duration divided by the

cumulated availability during the activity’s time window. Then we calculate the
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average over all resources. The resulting value reflects the degree to which the

activity requires the resources within its time window. Summing up, the resource

utilization of an activity j is defined as

RUj ¼
1

K
�
XK

k¼1

Ppj

t¼1 rjktPLF�j
t¼ES�j

Rkt

:

When selecting the next activity to be scheduled, we should take into account

that not only an activity itself but also its successors might have large resource

requirements. If an activity has many successors with large resource utilization

level, it might be scheduled with a higher priority. Therefore, we calculate the

extended resource utilization RU0j of activity j that also takes the cumulated

resource utilization of its successors into account. Thereby, x1 and x2 are the

weights related to the activity and to its successors, respectively. We obtain

RU0j ¼ x1 � jSjj � RUj þ x2 �
X
i2Sj

RUi:

Finally, we multiply the critical path value and the extended resource utilization

value, which yields the priority value of the CPRU rule. Thus, an activity has a high

Fig. 2 Tournament heuristic based on the serial SGS
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priority if it is associated with a long critical path and substantial resource

requirements. We have

CPRUj ¼ CPj � RU0j :

4 Computational results

4.1 Results for original data of the real project

In what follows, we consider again the original data of the real-world medical

research project of Sect. 2.1. This project consists of 25 experiments. The number of

repetitions per experiment is between 2 and 9. Experiments with up to 4 repetitions

were transformed 2 activities, while those with 5 or more were transformed into 3

activities. In total, 62 activities were defined (excluding start and end activity). The

durations of the experiments and hence those of the activities range from 2 to 8

days.

Each experiment is associated with a constraint that the related jobs do not finish

on the same day. This requirement is transformed into 25 resources with a constant

per-period availability of one unit. The associated resource demand is time-

dependent with a non-zero demand only in the last period (cf. Sect. 2.2).

Two further resources cover the laboratory equipment and the researcher. The

availabilities of these two resources are varying over time, taking into account the

laboratory conditions and the personal schedule of the researcher. For both

resources, the availability corresponds to the number of repetitions that can be

handled at the same time. The activities’ requests for these two resources are

varying over time, they are either 0 or correspond to the number of repetitions. The

laboratory equipment resource is needed only in the last period of an activity (i.e.,

on the last day of an experiment). The request for the researcher resource over time

depends on the actual experiment.

In all, this case study leads to a moderately-sized project with J = 62 non-

dummy activities and K = 27 resources. While there are no precedence relations,

many of the resource availabilities and requests are varying with time, which is the

key feature of the RCPSP/t. Also additional temporal constraints which stipulate

that certain activities may not finish on the same day are captured with this model.

The classical lower bound LB is only 8 days (recall that no precedence relations

are given, hence LB corresponds to the longest activity duration). The new lower

bound LB/t is 31 days. A detailed analysis of this particular instance has shown that

a tight lower bound is 67 days (cf. Hartmann 1999). The proposed tournament

heuristic usually leads to a makespan of 67 days when at least 100 passes are

allowed (note that it is a non-deterministic method, hence several test runs were

carried out with a limit of 100 passes, and almost 100% of these runs led to a project

duration of 67 days). Taking the lower bound into account, we can conclude that 67

is the optimal solution. With 0.014 CPU seconds for 100 passes, the calculation

times of the tournament heuristic were very moderate. Obviously, it was not a

difficult task for this simple method to find an optimal schedule. It is a rather small
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and easy project instance, and its main use here is the motivation of the problem

setting and not an evaluation of the method.

Next, we have tested the capability of the mathematical model of Sect. 2.2 to find

an optimal solution for the case study instance. In order to reduce the number of

binary variables, we proceeded as follows. First, we applied the tournament

heuristic to find a good upper bound on the makespan. Then, based on this upper

bound, we calculated the adapted time windows [EFj
*, LFj

*]. Now only variables xjt

with j ¼ 0; . . .; J þ 1 and t ¼ EF�j ; . . .; LF�j instead of t ¼ 1; . . .; T are needed. We

applied the GNU LP solver GLPK to find an optimal schedule, but, as expected, this

was impossible. After more than 18 h we stopped the calculation without an optimal

solution. This is, of course, in line with the experience from the standard RCPSP

where projects of this size cannot be tackled with IP solvers. This also underscores

the need for heuristics.

The real project schedule (which was made by hand by the researcher) had a

makespan of 75 days. The schedule found by the tournament heuristic is 8 days or

10.7% shorter. However, this result must be interpreted with care because it

was not possible to retrieve all details that led to the original project duration of

75 days.

4.2 Generation of test instances for the RCPSP/t

An in-depth analysis of the properties of the RCPSP/t and the behavior of a

scheduling method is hardly possible based on just a single project instance.

Therefore, this subsection is devoted to a pragmatic approach to generate test

instances for the RCPSP/t. These test sets will then be used to evaluate the

tournament heuristic in more detail.

Several instance generators for project scheduling have been proposed in the

literature. In addition to the standard RCPSP, a few extensions such as multiple

modes and maximal time lags have been considered; for a brief survey we refer to

Hartmann and Briskorn (2010). ProGen of Kolisch et al. (1995) is probably the most

widely used generator. The test sets generated by ProGen have become more or less

a standard in the scientific community. They are available in the online project

scheduling problem library PSPLIB, cf. Kolisch and Sprecher (1996).

To the best of our knowledge, time-dependent resource parameters are not

considered by any of the generators. Therefore, we propose a method to generate

test instances for the RCPSP/t. Rather than a whole new generator, however, we

suggest to extend standard RCPSP instances by varying the originally constant

resource availability and request. Our generator can be viewed as an add-on to

ProGen: It reads a set of RCPSP instances in the ProGen format, adds variation to

the resources and writes the resulting RCPSP/t instances in an extended ProGen

format. The only changes of the format are the following:

• Each resource request rjk is replaced by a list rjk1; . . .; rjkpj
: Note that a dummy

activity with a duration of pj = 0 periods cannot request a resource by definition,

hence the related lists are empty, that is, the output does not contain requests for

dummy activities.

Project scheduling with resource capacities

123



• Each resource capacity Rk is replaced by a list Rk1; . . .;RkT ; with T ¼
P

j pj

being the sum of all durations.

The following parameters are employed to control the variation of the resource

availabilities and requests. Probabilities PR and Pr control whether or not a

reduction is applied to the availability and the request, respectively. Factors FR and

Fr determine the strength of the reduction for the availability and the request,

respectively.

Having read a standard RCPSP instance, the generator proceeds as follows. In

each period t ¼ 1; . . .; T of the planning horizon, the availability Rkt of resource

k ¼ 1; . . .;K is set to Rk � FR with probability PR and to Rk with probability 1 - PR,

where Rk is the constant availability from the original ProGen file. The requests are

defined analogously. For each activity j ¼ 1; . . .; J and each period t ¼ 1; . . .; pj; the

request rjkt for resource k ¼ 1; . . .;K is set to rjk � Fr with probability Pr and to rjk

with probability 1 - Pr. Here, rjk is the constant request from the original ProGen

file.

The generator can operate in two modes. In the first mode, reductions are applied

to periods (either of the horizon or of an activity duration) as a whole. That is, if it is

decided that the capacity or demand is reduced in a period, this reduction is applied

to all resources. In the second mode, it is decided for each resource separately

whether or not the capacity or demand is reduced in a period. Preliminary

experiments have shown that the second mode may lead to only a very few feasible

start times for activities with long durations, which reduces the degrees of freedom

for scheduling. Therefore, we have used only the first mode for the experiments

reported in the remainder of this paper.

Several sets of test instances have been generated. As a basis, we used the J30

and the J120 RCPSP test sets from the PSPLIB (Kolisch and Sprecher 1999). For

each of these two, six test sets have been created. They are denoted as

J30t1,. . .;J30t6 and J120t1,. . .;J120t6, respectively, where ‘‘t‘‘ indicates the time

dependency and the number refers to the parameter setting for the calculation. Since

there are 480 instances in the J30 set and 600 in the J120 set, we obtained 6 � 480 ¼
2880 RCPSP/t instances with J = 30 and 6 � 600 ¼ 3600 with J = 120. The

reduction probabilities have been varied between 0.05 and 0.2. Note that the

probabilities are the same for availability and request, that is, PR = Pr. The strength

of the reduction is either to half of the original capacity or down to 0. The factors are

the same for capacity and demand, hence we have FR = Fr. The design of the test

sets is displayed in Table 1.

Table 1 Parameter settings for generation of test sets

Set no. 1 2 3 4 5 6

PR 0.05 0.1 0.2 0.05 0.1 0.2

Pr 0.05 0.1 0.2 0.05 0.1 0.2

FR 0 0 0 0.5 0.5 0.5

Fr 0 0 0 0.5 0.5 0.5
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4.3 Analysis of lower bounds

In what follows, we summarize the outcome of the computational experiments.

Since optimal solutions for the new test instances of Sect. 4.2 are not yet known,

deviations of the heuristic makespan from the optimal one cannot be given.

Therefore, the results of the tournament heuristic will be given in terms of

deviations from a lower bound.

Table 2 shows that the new lower bound LB/t is substantially larger than the

classical lower bound LB. Hence, if the gap between upper and lower bound is

examined, it clearly pays to make use of LB/t instead of LB. When the reduction

probability PR increases, there are more periods with a reduced resource

availability. Then it becomes more difficult to find a feasible start time for an

activity (especially if the latter has a long duration). Thus, the deviation of LP/t from

LB increases. The reduction factors FR and Fr play a similar role, where FR appears

to have a stronger impact. A factor of FR = 0 implies a reduction to an availability

of 0 resource units. This leads to more infeasible start times than FR = 0.5 and thus

to a higher deviation of LP/t from LB.

4.4 Results for generated test sets

In this section, we analyze the performance of the proposed tournament heuristic

using the test sets introduced in the previous subsection. Two stopping criteria were

used: The heuristic was stopped after 100 and 1000 schedules were calculated for an

instance, respectively.

In a first step, we have a look at the tournament factor u; which was varied

between 0.1 and 0.9. The CPRU rule with weights x1 = 0.4 and x2 = 0.6 was

selected. Table 3 shows that the results are best for medium values of the

tournament factor; generally, u ¼ 0:5 gives good results. This is no surprise as a

small tournament factor decreases the probability that an eligible job with a good

priority value Ist selected, whereas a large tournament factor implies that the

eligible job with the highest priority value is selected very often, which might

restrict the search to a too narrow area of the search space. In other words, a medium

selective pressure keeps the balance between focus on promising activities and

wider exploration of the search space. Generally, however, the impact of u seems to

be rather small as long as no extreme settings are used, which indicates that the

tournament method is robust in this regard. Based on these observations, u ¼ 0:5
was used in all further experiments.

Table 2 Deviation of new lower bound LB/t from classical lower bound LB

PR = Pr 0.05 0.1 0.2 0.05 0.1 0.2

FR = Fr 0 0 0 0.5 0.5 0.5

J = 30 23.2% 50.7% 114.6% 5.5% 12.5% 30.7%

J = 120 23.4% 48.9% 122.9% 2.5% 5.7% 13.6%
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Next, we take a look at the impact of the choice of the priority rule within the

tournament heuristic. We compare the proposed CPRU rule to several classic

priority rules for the standard RCPSP. Unlike CPRU, the classic rules do not exploit

the time dependency of the resources. The following rules are included: The random

rule (RND) picks a random activity from the eligible set (thereby all eligible

activities have the same probability to be picked). It is used as a benchmark. The

minimum slack rule (MSLK, Davis and Patterson 1975) picks the activity j with the

smallest slack time LFj - ej, where LFj is the precedence-based latest finish time

and ej is the earliest precedence and resource feasible start time in the current partial

schedule. The latest start time rule (LST, Alvarez-Valdes and Tamarit 1989)

chooses the activity j with the smallest latest start time LSj = LFj - pj. LST was

among the best performing RCPSP rules in the study of Kolisch (1996). The very

similar latest finish time rule (LFT, Davis and Patterson 1975) is not considered here

since it yielded consistently worse results than LST. Table 4 summarizes the results

for the set with J = 30 while Table 5 does so for the set with J = 120. Again, the

two stopping criteria of 100 and 1000 schedules have been employed.

The results are reported in terms of average deviation from the new lower bound

LB/t. For both the J = 30 and J = 120 set, the results are given separately for each

subset and for the entire set. We observe that, as expected, the RND rule leads to the

worst results since it does not add any intelligence to the schedule generation

Table 3 Impact of selectiveness (average deviation from lower bound LB/t)

Test set Passes u ¼ 0:1 u ¼ 0:3 u ¼ 0:5 u ¼ 0:7 u ¼ 0:9

J = 30 100 12.6% 12.6% 12.4% 12.5% 12.7%

1,000 11.6% 11.6% 11.6% 11.7% 11.9%

J = 120 100 37.9% 34.3% 33.6% 33.6% 33.8%

1,000 35.3% 32.4% 32.0% 32.1% 32.4%

Table 4 Results of tournament heuristic for J = 30

PR = Pr 0.05 0.1 0.2 0.05 0.1 0.2 All

FR = Fr 0 0 0 0.5 0.5 0.5 All

Passes Rule Average deviation from lower bound LB/t Feasible CPU-s

100 RND 13.8% 10.2% 6.5% 17.0% 18.3% 17.4% 13.9% 98.2% 0.002

MSLK 12.9% 9.8% 6.2% 16.0% 17.0% 16.3% 13.1% 98.2% 0.003

LST 12.3% 9.1% 5.9% 15.2% 15.9% 15.3% 12.4% 98.2% 0.002

CPRU 12.3% 9.1% 6.0% 15.2% 16.1% 15.3% 12.4% 98.2% 0.002

1000 RND 12.2% 9.2% 6.1% 15.4% 16.2% 15.3% 12.5% 98.3% 0.018

MSLK 11.9% 9.0% 5.8% 14.8% 15.6% 14.7% 12.0% 98.2% 0.027

LST 11.5% 8.7% 5.7% 14.4% 15.0% 13.9% 11.6% 98.2% 0.019

CPRU 11.5% 8.7% 5.7% 14.2% 15.0% 14.0% 11.6% 98.3% 0.019
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scheme. MSLK performs better than RND, but the difference is not that big. LST is

much better than MSLK, and the new CPRU rule is slightly better than LST. Note

that the critical path part of the CPRU rule is closely related to the LST rule. Since

CPRU performs slightly better than LST, we can conclude that it pays to add

resource information to the critical path information.

Note, however, that for the J = 30 set the differences between the rules are

small, and there are hardly any differences between CPRU and LST. For the set with

J = 120, the differences are bigger, but those between CRPU and LST remain

rather small. Consequently, we have carried out statistical tests to analyze the

differences between CPRU and LST for this set. The Wilcoxon signed ranks test

was applied (see Bowerman and O’Connell 2003). Table 5 shows that the difference

between CPRU and LST is in fact clearly significant for the entire J = 120 test set

as well as for most subsets, in many cases with p \ 0.001. Also observe that the

difference between CPRU and LST is greatest (and highly significant) for

PR = Pr = 0.2. That is, the CPRU rule is most promising if frequent changes in

the resource availability and demand occur.

Let us now briefly discuss the percentage of project instances for which a feasible

schedule can be found. Recall that it might not be possible to find a feasible solution

within the horizon T ¼
P

j pj because of the variation of resource capacity and

request over time. Tables 4 and 5 indicate that there are no substantial differences

between the priority rules. Table 6 looks at the subsets of the two test sets,

considering only the CPRU rule. For the sets with J = 120, a feasible schedule is

found for each instance, which is not the case for the set with J = 30. For J = 30,

we observe that both more frequent (PR = 0.2) and more drastic (FR = 0)

reductions of the resource availabilities make it harder to find feasible schedules

within the horizon.

Table 5 Results of tournament heuristic for J = 120

PR = Pr 0.05 0.1 0.2 0.05 0.1 0.2 All All All

FR = Fr 0 0 0 0.5 0.5 0.5 All All All

Passes Rule Average deviation from lower bound LB/t Feasible CPU-s

100 RND 40.5% 32.0% 20.3% 55.6% 57.4% 60.1% 44.3% 100.0% 0.009

MSLK 37.4% 29.8% 18.7% 51.3% 53.7% 56.7% 41.3% 100.0% 0.021

LST 30.4% 23.5% 15.2% 43.6% 44.7% 47.2% 34.1% 100.0% 0.012

CPRU 30.5% 23.5% 14.2% 43.2% 44.0% 46.1% 33.6% 100.0% 0.013

*** ** * *** ***

1000 RND 37.5% 29.3% 17.2% 51.8% 53.6% 56.2% 40.9% 100.0% 0.086

MSLK 35.2% 27.7% 16.8% 48.8% 50.5% 53.3% 38.7% 100.0% 0.188

LST 29.2% 22.4% 14.0% 41.9% 43.1% 45.2% 32.6% 100.0% 0.114

CPRU 29.1% 21.9% 13.2% 41.4% 42.2% 44.2% 32.0% 100.0% 0.118

*** *** *** *** *** ***

Significant difference between CPRU and LST with * p \ 0.05, ** p \ 0.01, *** p \ 0.001.
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Finally, we take a quick look at the computation times. The last column of

Tables 4 and 5 shows the average CPU-seconds per instance when the heuristic

stops after 100 and 1000 schedules, respectively. The calculation times are very

moderate. The MSLK time are the highest because the earliest start time has to be

calculated for each eligible activity, which is fairly time-consuming. The computer

used for the experiments contains an Intel Core2 Duo CPU with 2.66 GHz and runs

under Windows Vista (32 Bit).

5 Conclusions

In this paper, we have tackled the resource-constrained project scheduling problem

with time-dependent resource capacity and demand (RCPSP/t) which is a

straightforward extension of the classical RCPSP. The practical relevance has been

demonstrated by means of a real medical research project. This case study also

included a new type of temporal constraints. It was shown that these temporal

constraints can be captured by the RCPSP/t, which further indicates the practical

relevance of this problem setting.

Moreover, a new type of randomized priority rule heuristic has been proposed. It

borrows the concept of tournament selection from genetic algorithms. The goal was

to develop an alternative randomized approach that allows to adjust the selective

pressure by means of an intuitive parameter. As the experience shows (Kolisch and

Hartmann 2006), priority rule heuristics usually cannot compete with more

elaborate approaches such as metaheuristics. Hence the application of this new

method will most likely be the calculation of initial solutions for metaheuristics.

In order to conduct computational experiments, a large set of test instances has

been generated. The starting point were widely used RCPSP test instances from the

online library PSPLIB. These standard instances were extended to the RCPSP/t by

adding variation to the originally constant resource availability and demand. The

proposed generator includes parameters that allow to control the frequency and

strength of this variation in a systematic manner. The resulting test sets will be made

available to the scientific community in the PSPLIB online library. We hope that

this helps to advance further research on the RCPSP/t which deserves attention

already because of its practical relevance. Exact and more advanced heuristic

methods are promising areas of future research on this problem setting.

Finally, it should be mentioned that the application of the tournament heuristic is

not restricted to project scheduling. In fact, it can be used for any combinatorial

optimization problem for which it makes sense to build up solutions step by step and

Table 6 Percentage of instances with feasible solution found (CPRU rule, 1000 passes)

PR = Pr 0.05 0.1 0.2 0.05 0.1 0.2 All

FR = Fr 0 0 0 0.5 0.5 0.5 All

J = 30 100.0% 100.0% 91.3% 100.0% 100.0% 98.3% 98.3%

J = 120 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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to pick one out of several alternatives in each step based on a priority rule.

Nevertheless, its benefits are the simple structure and the intuitive parameter

definition, while high quality heuristic solutions can usually not be expected from

this type of heuristic.
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Möhring RH, Schulz AS, Stork F, Uetz M (2003) Solving project scheduling problems by minimum cut

computations. Manag Sci 49:330–350

Neumann K, Zimmermann J (2000) Procedures for resource leveling and net present value problems in

project scheduling with general temporal and resource constraints. Eur J Oper Res 127(2):425–443

Neumann K, Schwindt C, Zimmermann J (2002) Recent results on resource-constrained project

scheduling with time windows: models, solution methods, and applications. Cent Eur J Oper Res

10:113–148

Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce

resources. Springer, Berlin

Poder E, Beldiceanu N, Sanlaville E (2004) Computing a lower approximation of the compulsory part of

a task with varying duration and varying resource consumption. Eur J Oper Res 153:239–254

Pritsker AAB, Watters LJ, Wolfe PM (1969) Multiproject scheduling with limited resources: a zero-one

programming approach. Manag Sci 16:93–107

Sprecher A (2000) Scheduling resource-constrained projects competetively at modest memory

requirements. Manag Sci 46:710–723

Sprecher A (1994) Resource-constrained project scheduling: exact methods for the multi-mode case.

Number 409 in lecture notes in economics and mathematical systems. Springer, Berlin

Sprecher A, Drexl A (1998) Multi-mode resource-constrained project scheduling by a simple, general and

powerful sequencing algorithm. Eur J Oper Res 107:431–450

Sprecher A, Kolisch R, Drexl A (1995) Semi-active, active and non-delay schedules for the resource-

constrained project scheduling problem. Eur J Oper Res 80:94–102

Talbot FB (1982) Resource-constrained project scheduling with time-resource tradeoffs: the nonpre-

emptive case. Manag Sci 28:1197–1210

Wȩglarz, J (eds) (1999) Project scheduling: recent models, algorithms and applications. Kluwer,

Dordrecht

Author Biography

Sönke Hartmann received a diploma in computer science and a PhD in Operations Research from the

University of Kiel, Germany. Subsequently, he was a logistics consultant for several years. The main

focus of his projects was on optimization and simulation of container terminals. Since 2007, Sönke is

professor of operations research and logistics at the HSBA Hamburg School of Business Administration.

His research interests are in optimization algorithms and their applications as well as simulation of

logistics processes. He has published in several scientific journals including European Journal of

Operational Research, OR Spectrum and Naval Research Logistics.

S. Hartmann

123


	Project scheduling with resource capacities and requests varying with time: a case study
	Abstract
	Introduction
	Problem setting
	Case study: a medical research project
	Formal problem definition
	Time windows and lower bound

	Priority rule heuristics
	Schedule generation scheme
	A multi-pass heuristic based on tournaments
	Priority rules

	Computational results
	Results for original data of the real project
	Generation of test instances for the RCPSP/t
	Analysis of lower bounds
	Results for generated test sets

	Conclusions
	Acknowledgement
	References


